
CSE 451: Operating Systems

 Spring 2010

Module 12

Page Table Management, TLBs,

and Other Pragmatics

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 2

Address translation and page faults
(refresher!)

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #page frame #

page table

offset

virtual address

virtual page #

What mechanism
causes a page fault

to occur?

Recall how address
translation works

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 3

How does OS handle a page fault?

• Interrupt causes system to be entered
• System saves state of running process, then vectors to

page fault handler routine
– find or create (through eviction) a page frame into which to

load the needed page (1)
• if I/O is required, run some other process while it’s going on

– find the needed page on disk and bring it into the page frame
(2)

• run some other process while the I/O is going on

– fix up the page table entry
• mark it as “valid,” set “referenced” and “modified” bits to false, set

protection bits appropriately, point to correct page frame

– put the process on the ready queue

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 4

• (2) Find the needed page on disk and bring it into
the page frame
– processor makes process ID and faulting virtual address

available to page fault handler
– process ID gets you to the base of the page table
– VPN portion of VA gets you to the PTE
– data structure analogous to page table (an array with an

entry for each page in the address space) contains disk
address of page

– at this point, it’s just a simple matter of I/O
• must be positive that the target page frame remains available!

– or what?

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 5

• (1) Find or create (through eviction) a page frame into which to load
the needed page
– run page replacement algorithm

• free page frame

• assigned but unmodified (“clean”) page frame

• assigned and modified (“dirty”) page frame

– assigned but “clean”
• find PTE (may be a different process!)

• mark as invalid (disk address must be available for subsequent reload)

– assigned and “dirty”
• find PTE (may be a different process!)

• mark as invalid

• write it out

• OS may speculatively maintain lists of clean and dirty frames selected
for replacement
– May also speculatively clean the dirty pages (by writing them to disk)

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 6

“Issues”

• (1) Memory reference overhead of address translation
– 2 references per address lookup (page table, then memory)
– solution: use a hardware cache to absorb page table lookups

• translation lookaside buffer (TLB)

• (2) Memory required to hold page tables can be huge
– need one PTE per page in the virtual address space
– 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
– 4 bytes/PTE = 4MB per page table

• OS’s typically have separate page tables per process
• 25 processes = 100MB of page tables

– 48 bit AS, same assumptions, 64GB per page table!

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 7

Solution 1 to (2): Page the page tables

• Simplest notion:
– Put user page tables in a pageable segment of the OS address space

• The OS page table maps the portion of the VAS in which the user process page
tables live

– Pin the OS’s page table(s) in physical memory
• never replace them, so you can never fault trying to access them

– When need a user page table entry:
• It's in OS virtual space, so need the OS page table to translate to a physical address

• You cannot fault on accessing the OS page table (because it's pinned)

• The OS page table might indicate the user page table isn't in real memory
– That's just a regular page fault, handled in the usual way

• This isn't exactly what is done any longer
– But it’s a useful model for what’s actually done

– It's a component of what is actually done

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 8

Solution 2 to (2): Segment the VAS

• How can we reduce the physical memory
requirements of page tables?
– observation: only need to map the portion of

the address space that is actually being used
(often a tiny fraction of the total address space)

• a process may not use its full 32/48/64-bit
address space

• a process may have unused “holes” in its address
space

• a process may not reference some parts of its
address space for extended periods

– all problems in CS can be solved with a level of
indirection!

• two-level (three-level, four-level) page tables

nothing

nothing

nothing

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 9

Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:
– master page number, secondary page number, offset
– master PT maps master PN to secondary PT
– secondary PT maps secondary PN to page frame number
– offset and PFN yield physical address

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 10

Two level page tables

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #

master
page table

secondary page#

virtual address

master page # offset

secondary
page tablesecondary

page table

page frame
number

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 11

• Example:
– 32-bit address space, 4KB pages, 4 bytes/PTE

• how many bits in offset?
– need 12 bits for 4KB (212=4K), so offset is 12 bits

• want master PT to fit in one page
– 4KB/4 bytes = 1024 PTEs
– thus master page # is 10 bits (210=1K)
– and there are 1024 secondary page tables

• and 10 bits are left (32-12-10) for indexing each secondary
page table

– hence, each secondary page table has 1024 PTEs and fits in one
page

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 12

Generalizing

• Early architectures used 1-level page tables
• VAX, P-II used 2-level page tables
• SPARC uses 3-level page tables
• 68030 uses 4-level page tables
• Key thing is that the outer level must be wired down

(pinned in physical memory) in order to break the
recursion – no smoke and mirrors

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 13

Alternatives

• Hashed page table (great for sparse address spaces)
– VPN is used as a hash
– collisions are resolved because the elements in the linked list

at the hash index include the VPN as well as the PFN

• Inverted page table (really reduces space!)
– one entry per page frame
– includes process id, VPN
– hard to search! (but IBM PC/RT actually did this!)

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 14

Making it all efficient (CSE 378)

• Original page table scheme doubled the cost of
memory lookups
– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!
– two lookups into page table, a third to fetch the data

• How can we make this more efficient?
– goal: make fetching from a virtual address about as efficient

as fetching from a physical address
– solution: use a hardware cache inside the CPU

• cache the virtual-to-physical translations in the hardware
• called a translation lookaside buffer (TLB)
• TLB is managed by the memory management unit (MMU)

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 15

TLBs

• Translation lookaside buffer
– translates virtual page #s into PTEs (page frame numbers) (not

physical addrs)
– can be done in single machine cycle

• TLB is implemented in hardware
– is a fully associative cache (all entries searched in parallel)
– cache tags are virtual page numbers
– cache values are PTEs (page frame numbers)
– with PTE + offset, MMU can directly calculate the PA

• TLBs exploit locality
– processes only use a handful of pages at a time

• 16-48 entries in TLB is typical (64-192KB)
• can hold the “hot set” or “working set” of a process

– hit rates in the TLB are therefore really important

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 16

Managing TLBs

• Address translations are mostly handled by the TLB
– >99% of translations, but there are TLB misses occasionally
– in case of a miss, translation is placed into the TLB

• Hardware (memory management unit (MMU))
– knows where page tables are in memory

• OS maintains them, HW access them directly

– tables have to be in HW-defined format
– this is how x86 works

• and that was part of the difficulty of virtualizing the x86...

• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– must be fast (but, 20-200 cycles typically)

• CPU ISA has instructions for TLB manipulation
• OS gets to pick the page table format

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 17

Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
– when OS changes protection bits in a PTE, it needs to invalidate

the PTE if it is in the TLB

• What happens on a process context switch?
– remember, each process typically has its own page tables
– need to invalidate all the entries in TLB! (flush TLB)

• this is a big part of why process context switches are costly

– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
– choosing a victim PTE is called the “TLB replacement policy”
– implemented in hardware, usually simple (e.g., LRU)

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 18

Functionality Enabled by Page Tables

• Code (instructions) is read-only
– A bad pointer can't change the program code!

• Dereferencing a null pointer is an error
– Why? Address 0 is a perfectly good address...

– How? There's a “hole” in the VAS at page 0
• So, never a valid page table entry for it

• Inter-process memory protection
– Of course

• Shared libraries
– All running C programs are using libc

– Have only one (partial) copy in real memory, not one per process

– How? All page table entries mapping libc are managed together, to point to
same physical frame

• DLL's in Windows...

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 19

More functionality

• Generalizing the use of “shared memory”
– regions of two separate processes’ address spaces map to the same

physical frames
– Why? Fast inter-process communcation

• Just read/write from/to shared memory

• Don't have to make a syscall to pass an integer to another process

– Will have separate PTEs per process, so can give different processes
different access privileges

• E.g., one reader, one writer

– Must the shared region map to the same VA in each process?

• Copy-on-write (COW), e.g., on fork()
– instead of copying all pages, created shared mappings of parent pages in

child address space
• make shared mappings read-only in child space

• when child does a write, a protection fault occurs, OS takes over and can then
copy the page and resume client

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 20

• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space
– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file
• initially, all pages in mapped region marked as invalid

– OS reads a page from file whenever invalid page accessed
– OS writes a page to file when evicted from physical memory

• only necessary if page is dirty

• Why (system view)?
– Use of real memory for paging and use as a file cache (coming soon...)

don't conflict

• Why (programmer view)?
– See next slide...

Less Familiar Uses

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 21

Memory Mapped Files (cont.)

• Imagine you have some pointer-based, in-memory data structure
– Like a tree...

• You want to preserve it across runs

• Usual approach:
– Serialize on way from memory to a disk file, deserialize on way from file back

into memory
• E.g., to serialize, perform a depth-first traversal, writing each node to disk as you

go; to deserialize, do the opposite

• Potentially easier:
– Allocate tree nodes in a “region”

• In place of pointers (addresses in the entire VAS), use offsets (distance from the
0th byte of the region) to link nodes

– Now just connect the memory region and the file using the memory mapped
file facility

• Normal paging results in any changes made in-memory being pushed to file

• The file is still there the next time you run. Just map-'n-go.

05/11/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 22

More “Unusual Uses”

• We saw that page replacement algorithms use the fact that “soft faults” are
pretty cheap
– Soft faults: faults on pages that are in memory, but whose PTE enties have artificially been

marked invalid

• That idea can be used whenever it would be useful to trap on a reference to
some data item

• Example: debugger watchpoints
– Debuggers let you set a breakpoint on access to a variable

– How can they detect an access?

• Mark the page containing the variable as invalid

• When a fault on that page occurs, look at the address and see if it corresponds to the variable

• If so, break on the watchpoint

• If not, simulate the instruction and continue program execution

• The effectiveness of this idea is limited by the fact that the granularity of
detection is the page
– E.g., if there are a lot of accesses to the other variables that happen to be on the page

containing the watchpoint variable, the program will run very slowly

05/11/10 © 2006 Gribble, Lazowska, Levy 23

Summary

• We know how address translation works in the
“vanilla” case (single-level page table, no fault, no
TLB)
– hardware splits the virtual address into the virtual page

number and the offset; uses the VPN to index the page table;
concatenates the offset to the page frame number (which is
in the PTE) to obtain the physical address

• We know how the OS handles a page fault
– find or create (through eviction) a page frame into which to

load the needed page
– find the needed page on disk and bring it into the page frame

– fix up the page table entry

– put the process on the ready queue

05/11/10 © 2006 Gribble, Lazowska, Levy 24

• We’re aware of two “gotchas” that complicate things
in practice
– the memory reference overhead of address translation

• the need to reference the page table doubles the memory traffic
• solution: use a hardware cache (TLB = translation lookaside

buffer) to absorb page table lookups

– the memory required to hold page tables can be huge
• solution: use multi-level page tables; can page the lower levels,

or at least omit them if the address space is sparse
– this makes the TLB even more important, because without it, a

single user-level memory reference can cause two or three or four
page table memory references … and we can’t even afford one!

	CSE 451: Operating Systems Spring 2006 Module 12 Page Table Management, TLBs, and Other Pragmatics
	Address translation and page faults (refresher!)
	How does OS handle a page fault?
	Slide 4
	Slide 5
	“Issues”
	Paging the page tables 1
	Paging the page tables 2
	Two-level page tables
	Two level page tables
	Slide 11
	Generalizing
	Alternatives
	Making it all efficient
	TLBs
	Managing TLBs
	Managing TLBs (2)
	Cool Paging Tricks
	Slide 19
	Slide 19
	Slide 21
	Slide 22
	Summary
	Slide 21

