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Address translation and page faults
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How does OS handle a page fault?

• Interrupt causes system to be entered
• System saves state of running process, then vectors to 

page fault handler routine
– find or create (through eviction) a page frame into which to 

load the needed page (1)
• if I/O is required, run some other process while it’s going on

– find the needed page on disk and bring it into the page frame 
(2)

• run some other process while the I/O is going on

– fix up the page table entry
• mark it as “valid,” set “referenced” and “modified” bits to false, set 

protection bits appropriately, point to correct page frame

– put the process on the ready queue
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• (2) Find the needed page on disk and bring it into 
the page frame
– processor makes process ID and faulting virtual address 

available to page fault handler
– process ID gets you to the base of the page table
– VPN portion of VA gets you to the PTE
– data structure analogous to page table (an array with an 

entry for each page in the address space) contains disk 
address of page

– at this point, it’s just a simple matter of I/O
• must be positive that the target page frame remains available!

– or what?
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• (1) Find or create (through eviction) a page frame into which to load 
the needed page
– run page replacement algorithm

• free page frame

• assigned but unmodified (“clean”) page frame

• assigned and modified (“dirty”) page frame

– assigned but “clean”
• find PTE (may be a different process!)

• mark as invalid (disk address must be available for subsequent reload)

– assigned and “dirty”
• find PTE (may be a different process!)

• mark as invalid

• write it out

• OS may speculatively maintain lists of clean and dirty frames selected 
for replacement
– May also speculatively clean the dirty pages (by writing them to disk)
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“Issues”

• (1) Memory reference overhead of address translation
– 2 references per address lookup (page table, then memory)
– solution: use a hardware cache to absorb page table lookups

• translation lookaside buffer (TLB)

• (2) Memory required to hold page tables can be huge
– need one PTE per page in the virtual address space
– 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
– 4 bytes/PTE = 4MB per page table

• OS’s typically have separate page tables per process
• 25 processes = 100MB of page tables

– 48 bit AS, same assumptions, 64GB per page table!
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Solution 1 to (2): Page the page tables

• Simplest notion:
– Put user page tables in a pageable segment of the OS address space

• The OS page table maps the portion of the VAS in which the user process page 
tables live

– Pin the OS’s page table(s) in physical memory
• never replace them, so you can never fault trying to access them

– When need a user page table entry:
• It's in OS virtual space, so need the OS page table to translate to a physical address

• You cannot fault on accessing the OS page table (because it's pinned)

• The OS page table might indicate the user page table isn't in real memory
– That's just a regular page fault, handled in the usual way

  

• This isn't exactly what is done any longer
– But it’s a useful model for what’s actually done

– It's a component of what is actually done
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Solution 2 to (2): Segment the VAS

• How can we reduce the physical memory 
requirements of page tables?
– observation: only need to map the portion of 

the address space that is actually being used 
(often a tiny fraction of the total address space)

• a process may not use its full 32/48/64-bit 
address space

• a process may have unused “holes” in its address 
space

• a process may not reference some parts of its 
address space for extended periods

– all problems in CS can be solved with a level of 
indirection!

• two-level (three-level, four-level) page tables

nothing

nothing

nothing
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Two-level page tables

• With two-level PT’s, virtual addresses have 3 parts:
– master page number, secondary page number, offset
– master PT maps master PN to secondary PT
– secondary PT maps secondary PN to page frame number
– offset and PFN yield physical address
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• Example:
– 32-bit address space, 4KB pages, 4 bytes/PTE

• how many bits in offset?
– need 12 bits for 4KB (212=4K), so offset is 12 bits

• want master PT to fit in one page
– 4KB/4 bytes = 1024 PTEs
– thus master page # is 10 bits (210=1K)
– and there are 1024 secondary page tables

• and 10 bits are left (32-12-10) for indexing each secondary 
page table

– hence, each secondary page table has 1024 PTEs and fits in one 
page
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Generalizing

• Early architectures used 1-level page tables
• VAX, P-II used 2-level page tables
• SPARC uses 3-level page tables
• 68030 uses 4-level page tables
• Key thing is that the outer level must be wired down 

(pinned in physical memory) in order to break the 
recursion – no smoke and mirrors
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Alternatives

• Hashed page table (great for sparse address spaces)
– VPN is used as a hash
– collisions are resolved because the elements in the linked list 

at the hash index include the VPN as well as the PFN

• Inverted page table (really reduces space!)
– one entry per page frame
– includes process id, VPN
– hard to search!  (but IBM PC/RT actually did this!)
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Making it all efficient (CSE 378)

• Original page table scheme doubled the cost of 
memory lookups
– one lookup into page table, a second to fetch the data

• Two-level page tables triple the cost!!
– two lookups into page table, a third to fetch the data

• How can we make this more efficient?
– goal: make fetching from a virtual address about as efficient 

as fetching from a physical address
– solution: use a hardware cache inside the CPU

• cache the virtual-to-physical translations in the hardware
• called a translation lookaside buffer (TLB)
• TLB is managed by the memory management unit (MMU)
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TLBs

• Translation lookaside buffer
– translates virtual page #s into PTEs (page frame numbers) (not 

physical addrs)
– can be done in single machine cycle

• TLB is implemented in hardware
– is a fully associative cache (all entries searched in parallel)
– cache tags are virtual page numbers
– cache values are PTEs (page frame numbers)
– with PTE + offset, MMU can directly calculate the PA

• TLBs exploit locality
– processes only use a handful of pages at a time

• 16-48 entries in TLB is typical  (64-192KB)
• can hold the “hot set” or “working set” of a process

– hit rates in the TLB are therefore really important
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Managing TLBs

• Address translations are mostly handled by the TLB
– >99% of translations, but there are TLB misses occasionally
– in case of a miss, translation is placed into the TLB

• Hardware (memory management unit (MMU))
– knows where page tables are in memory

• OS maintains them, HW access them directly

– tables have to be in HW-defined format
– this is how x86 works

• and that was part of the difficulty of virtualizing the x86...

• Software loaded TLB (OS)
– TLB miss faults to OS, OS finds right PTE and loads TLB
– must be fast (but, 20-200 cycles typically)

• CPU ISA has instructions for TLB manipulation
• OS gets to pick the page table format
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Managing TLBs (2)

• OS must ensure TLB and page tables are consistent
– when OS changes protection bits in a PTE, it needs to invalidate 

the PTE if it is in the TLB

• What happens on a process context switch?
– remember, each process typically has its own page tables
– need to invalidate all the entries in TLB!  (flush TLB)

• this is a big part of why process context switches are costly

– can you think of a hardware fix to this?

• When the TLB misses, and a new PTE is loaded, a 
cached PTE must be evicted
– choosing a victim PTE is called the “TLB replacement policy”
– implemented in hardware, usually simple (e.g., LRU)
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Functionality Enabled by Page Tables 

• Code (instructions) is read-only
– A bad pointer can't change the program code!

• Dereferencing a null pointer is an error
– Why?  Address 0 is a perfectly good address...

– How?  There's a “hole” in the VAS at page 0
• So, never a valid page table entry for it

• Inter-process memory protection
– Of course

• Shared libraries
– All running C programs are using libc

– Have only one (partial) copy in real memory, not one per process

– How?  All page table entries mapping libc are managed together, to point to 
same physical frame

• DLL's in Windows...
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More functionality

• Generalizing the use of  “shared memory”
– regions of two separate processes’ address spaces map to the same 

physical frames
– Why? Fast inter-process communcation

• Just read/write from/to shared memory

• Don't have to make a syscall to pass an integer to another process

– Will have separate PTEs per process, so can give different processes 
different access privileges

• E.g., one reader, one writer

– Must the shared region map to the same VA in each process?

• Copy-on-write (COW), e.g., on fork( )
– instead of copying all pages, created shared mappings of parent pages in 

child address space
• make shared mappings read-only in child space

• when child does a write, a protection fault occurs, OS takes over and can then 
copy the page and resume client
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• Memory-mapped files
– instead of using open, read, write, close

• “map” a file into a region of the virtual address space
– e.g., into region with base ‘X’

• accessing virtual address ‘X+N’ refers to offset ‘N’ in file
• initially, all pages in mapped region marked as invalid

– OS reads a page from file whenever invalid page accessed
– OS writes a page to file when evicted from physical memory

• only necessary if page is dirty

• Why (system view)?
– Use of real memory for paging and use as a file cache (coming soon...) 

don't conflict

• Why (programmer view)?
– See next slide...

Less Familiar Uses
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Memory Mapped Files (cont.)

• Imagine you have some pointer-based, in-memory data structure
– Like a tree...

• You want to preserve it across runs

• Usual approach:
– Serialize on way from memory to a disk file, deserialize on way from file back 

into memory
• E.g., to serialize, perform a depth-first traversal, writing each node to disk as you 

go;  to deserialize, do the opposite

• Potentially easier:
– Allocate tree nodes in a “region”

• In place of pointers (addresses in the entire VAS), use offsets (distance from the 
0th byte of the region) to link nodes

– Now just connect the memory region and the file using the memory mapped 
file facility

• Normal paging results in any changes made in-memory being pushed to file

• The file is still there the next time you run.  Just map-'n-go.
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More “Unusual Uses”

• We saw that page replacement algorithms use the fact that “soft faults” are 
pretty cheap
– Soft faults: faults on pages that are in memory, but whose PTE enties have artificially been 

marked invalid

• That idea can be used whenever it would be useful to trap on a reference to 
some data item

• Example: debugger watchpoints
– Debuggers let you set a breakpoint on access to a variable 

– How can they detect an access?

• Mark the page containing the variable as invalid

• When a fault on that page occurs, look at the address and see if it corresponds to the variable

• If so, break on the watchpoint

• If not, simulate the instruction and continue program execution

• The effectiveness of this idea is limited by the fact that the granularity of 
detection is the page
– E.g., if there are a lot of accesses to the other variables that happen to be on the page 

containing the watchpoint variable, the program will run very slowly
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Summary

• We know how address translation works in the 
“vanilla” case (single-level page table, no fault, no 
TLB)
– hardware splits the virtual address into the virtual page 

number and the offset; uses the VPN to index the page table; 
concatenates the offset to the page frame number (which is 
in the PTE) to obtain the physical address

• We know how the OS handles a page fault
– find or create (through eviction) a page frame into which to 

load the needed page
– find the needed page on disk and bring it into the page frame

– fix up the page table entry

– put the process on the ready queue
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• We’re aware of two “gotchas” that complicate things 
in practice
– the memory reference overhead of address translation

• the need to reference the page table doubles the memory traffic
• solution: use a hardware cache (TLB = translation lookaside 

buffer) to absorb page table lookups

– the memory required to hold page tables can be huge
• solution: use multi-level page tables; can page the lower levels, 

or at least omit them if the address space is sparse
– this makes the TLB even more important, because without it, a 

single user-level memory reference can cause two or three or four 
page table memory references … and we can’t even afford one!
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