
CSE 451: Operating Systems
 Spring 2010

Module 19
Security: Authentication

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 2

Basic Concepts

• Principals – who is acting
– User / Process Creator
– Code Author

• Objects – what is that principal acting on?
– File
– Network connection

• Rights
– Read
– Write

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 3

Policy: The Access Matrix Concept

Alice Bob Carl

/etc Read Read Read
Write

/homes Read
Write

Read
Write

Read
Write

/usr None None Read

• This is a picture of a concept
• There are multiple implemenation alternatives

• Policy / mechanism distinction
• We’ll get back to this later

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 4

Some Fundamental Concepts

• Authentication (who are you)
– identifying principals (users / programs)

• Authorization (what are you allowed to do)
– determining what access users and programs have to things

• Auditing (what happened)
– record what users and programs are doing for later analysis /

prosecution

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 5

Authentication

• How does the provider of a secure service know who
it’s talking with?
– Example: login

• We’ll start with the local case (the keyboard is
attached to the machine you want to login to)

• Then we’ll look at a distributed system

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 6

Local Login

(“Local” ⇒ this connection is assumed secure)

How does the OS know that I’m ‘zahorjan’?

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 7

Shared Secret

My dog
has fleas

Zahorjan:
My dog has

fleas

The shared secret is typically a password, but it could be something else:
• Retina scan
• A key

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 8

Simple Enough

• This seems pretty trivial

• Like pretty much all aspects of security, there are
perhaps unexpected complications

• As an introduction to this, let’s look at briefly at the
history of password use

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 9

• CTSS (1962): password file {user name, user identifier,
password}

If a bad guy gets hold of the password file, you’re in deep trouble

– Any flaw in the system that compromises the password file compromises
all accounts!

Storing passwords

Bob, 14, “12.14.52”
David, 15, “allison”
Mary, 16, “!ofotc2n”

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 10

Two Choices

1. Make sure there are no flaws in the system
2. Render knowledge of the password file useless

Unix (1974): store encrypted forms of the passwords

My dog
has
fleas

Zahorjan:
2zppQ01c

06/04/10 © 2005 Gribble, Lazowska, Levy, Swift 11

Aside on Encryption

• Encryption: takes a key and plaintext and creates ciphertext: Ek1(M) = C

• Decryption: takes ciphertext and a key and recovers plaintext: Dk2(C) = M

• Symmetric algorithms (aka secret-key aka shared secret algorithms):
– k1 = k2 (or can get k2 from k1)

• Public-Key Algorithms
– decryption key (k2) cannot be calculated from encryption key (k1)
– encryption key can be made public!

• encryption key = “public key”, decryption key = “private key”

• Computational requirements:
– Deducing M from Ek(M) is “really hard”

– Computing Ek(M) and Dk(C) is efficient

encryption decryption
plaintext (M) ciphertext (C) M

encryption key (k1) decryption key (k2)

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 12

• Encrypt passwords with passwords

• David’s password, “allison,” is encrypted using itself as the key
and stored in that form.

• Password supplied by user is encrypted with itself as key, and
result compared to stored result.

• “No problem if someone steals the file”

Bob: 14: S6Uu0cYDVdTAk
David: 15: J2ZI4ndBL6X.M
Mary: 16: VW2bqvTalBJKg

K=[alison]allison

Unix Password File (/etc/passwd)

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 13

The Dictionary Attack

• Encrypt many (all) possible password strings offline, and store
results in a dictionary
– I may not be able to invert any particular password, but the odds

are very high I can invert one or more

• 26 letters used, 7 letters long
– 8 billion passwords (33 bits)
– Generating 100,000/second requires 22 hours

• But most people’s passwords are not random sequences of
letters!
– girlfriend’s/boyfriend’s/spouse’s/dog’s name/words in the dictionary

• Dictionary attacks have traditionally been incredibly easy

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 14

Making it harder
• Using symbols and numbers and longer passwords

– 95 characters, 14 characters long
– 1027 passwords = 91 bits
– Checking 100,000/second breaks in 1014 years

• Require frequent changing of passwords
– guards against loaning it out, writing it down, etc.

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 15

Do longer passwords work?

• People can’t remember 14-character strings of
random characters

• People write down difficult passwords
• People give out passwords to strangers
• Passwords can show up on disk
• If you are forced to change your password

periodically, you probably choose an even dumber
one
– “feb04” “mar04” “apr04”

• How do we handle this in CSE?

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 16

• Unix (1979): salted passwords
– The salt is just a random number from a large space

Encryption is computed after affixing a number to the
password. Thwarts pre-computed dictionary attacks

Bob: 14: T7Vs1dZEWeRcL: 45
David: 15: K3AJ5ocCM4ZM$: 392
Mary: 16: WX3crwUbmCKLf: 152

K=[alison392]allison392

Countermeasure to the Dictionary Attack:
Salt

Okay, are we done? Problem solved?

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 17

Attack Models

• Besides the problems already mentioned that
obviously remain (people give out their passwords /
write them down / keyloggers / …), there may be
other clever attacks that we haven’t thought of

• Attack Model: when reasoning about the security of a
mechanism, we need typically need to carefully
describe what kinds of attacks we’re thinking of
– helps us reason about what vulnerabilities still remain

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 18

Example 1: Login spoofers

• Login spoofers are a specialized class of Trojan
horses
– Attacker runs a program that presents a screen identical to

the login screen and walks away from the machine
– Victim types password and gets a message saying

“password incorrect, try again”

• Can be circumvented by requiring an operation that
unprivileged programs cannot perform
– E.g., start login sequence with a key combination user

programs cannot catch, CTRL+ALT+DEL on Windows

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 19

Example 2: Cool password attack

• VMS (early 80’s) password checking flaw

– password checking algorithm:
for (I=0; I<password.length(); I++) {

if password[I] == supplied_password[I]

return false;

}

return true;

– can you see the problem?
• hint: think about virtual memory…
• another hint: think about page faults…
• final hint: who controls where in memory supplied_password

lives?

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 20

Distributed Authentication (Single Domain)

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 21

Kerberos

Alice

A, Request for TGT

{A, SKAS, {TGT}KTGS}Kas

Na,“A”,”B”, {TGT}KTGS

{Na, B, Kab, {Kab, A}Kbs}SKAS

{Kab, A}Kbs

{Data}Kab

Ticket Granting
Service

Authentication
Server

Client
Key DB

Print Server (B)
At this point Alice and the server

have a shared secret

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 22

Trust Relationships
• Both Alice and the server must trust the Kerberos servers (“trusted

third party”)

• This architecture is essentially what Microsoft Passport is (the
predecessor to Microsoft Windows Live ID):

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 23

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 24

And More...

In December 1999, Microsoft neglected to pay their annual $35
"passport.com" domain registration fee to Network Solutions. The
oversight made Hotmail, which used the site for authentication,
unavailable on Christmas Eve, December 24. A Linux consultant,
Michael Chaney, paid it the next day (Christmas), hoping it would
solve this issue with the downed site. The payment resulted in the
site being available the next morning.[9] In Autumn 2003, a similar
good Samaritan helped Microsoft when they missed payment on
the "hotmail.co.uk" address, although no downtime resulted.[10]

http://en.wikipedia.org/wiki/Microsoft_Passport

06/04/10 © 2010 Gribble, Lazowska, Levy, Swift, Zahorjan 25

And Finally...

Windows Live ID security breached
Sunday June 17, 2007 – 22:32

"A critical error was made by the Microsoft programmers that allows everyone to
create an ID for virtually any e-mail address", says Erik. The procedure indeed checked
out to be very simple: After registration on www.live.com with a valid e-mail address
that the user does have access to, the confirmation link is received. Before using it
however, it is allowed to change the initial e-mail address to one that even cannot exist,
or you do not own. After logging out a second time and confirming using the first link,
the Microsoft system simply confirms the account, using the new and unowned e-mail
address.

	CSE 451: Operating Systems Spring 2006 Module 19 Security: Authentication
	Basic Concepts
	Policy: The Access Matrix Concept
	Some Fundamental Concepts
	Authentication
	Local Login
	Shared Secret
	Simple Enough
	Storing passwords
	Two Choices
	Aside on Encryption
	Unix Password File (/etc/passwd)
	The Dictionary Attack
	Making it harder
	Do longer passwords work?
	Countermeasure to the Dictionary Attack: Salt
	Attack Models
	Example 1: Login spoofers
	Example 2: Cool password attack
	Distributed Authentication (Single Domain)
	Kerberos
	Trust Relationships
	Slide 23
	Slide 24
	Slide 25

