
CSE 451: Operating Systems
 Spring 2010

Module 5
Threads

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

Module Overview

1) Big Picture: Achieving Concurrency/Parallelism

2) Kernel Threads

3) User-Level Threads

4) Task/Work Queues

5) Event-driven Programming

6) Event-driven Programming Discussion

1. The Big Picture

• Threads are about concurrency and parallelism
– Reminder:

• Parallelism: physically simultaneous operations for performance
• Concurrency: logically (and possibly physically) simultaneous operations

for convenience

• One way to get concurrency and parallelism is using
multiple processes
– The programs (code) of distinct processes are isolated from each

other, at run time and at coding time

• Threads are another way to get concurrency and parallelism
– Threads “share a process”
– Threads directly interact, at coding time and at run time

Process Parallelism

• Multiprogramming was developed to maximize CPU
utilization
– While one process is doing I/O, another one (or ten) are

eligible to run on the CPU

• Example 1:
– While I'm working in a bash terminal on attu, so are 10

other people
– While I'm running gcc on attu, someone else is running

emacs, some else a.out, …

Example 2: Process Parallelism For A
Single User

• Imagine that I execute:
– $ egrep '[0­9]{3}­[0­9]{2}­[0­9]{4}' foo.txt

• If I were doing this a lot, and I cared about speed,
and foo.txt is big enough (and the pattern slow
enough), then I might instead execute:

– $ cat foo.txt | egrep '[0­9]{3}­[0­9]{2}­[0­9]{4}'

• Why?

• Hey, it's parallelism!

Example 2 (cont.)

• $ cat foo.txt | egrep '[0­9]{3}­[0­9]{2}­[0­9]{4}'

• You can easily imagine it's a lot easier to write cat and a limited version of
egrep separately than to write a performant version of egrep
– Hey, it's concurrency!

• If you wanted egrep alone to be able to overlap reading the file with doing
the pattern match, you should implement it like the process solution!
– One “thread” reads the file, and puts successive lines in a buffer

– Another thread takes lines out of the buffer, and pattern matches

• This will be quite a bit faster than the process solution
– Why?

• You have to get around the isolation barriers of the processes

• Threads (within a single process) are not isolated from each other, so coordinating
them is much cheaper

Example 2 Discussion

• The process parallelism worked because the
communication required between cat and egrep was
simple enough that a pipe suffices
– Requirements:

• Communication is one-way
• Communication is a stream

• If the two processes needed more complicated
communication, processes and pipes wouldn't be
handy
– E.g., both actors need to update a common data structure

Example 3: A Very Strained Analogy -
Browsers

• Imagine you want to look at both the latest
international news (http://global.nytimes.com/?iht) and
the latest hockey scores (http://espn.go.com/nhl)

• You can:
– Start two browser instances, and look at one page in each,

or
– Start one browser instance, and bring up each page in its

own tab

• Tabs come up quicker... (and consume less screen
real-estate, and generally seem lighter weight,
and ...)

http://global.nytimes.com/?iht
http://espn.go.com/nhl

2. Kernel Threads

• Up to now, a process is:
– An address space (code + data)
– OS resources (open files, etc.)
– A stack (procedure call trace + local variables)
– A PC + general purpose register values

• Let's separate the concepts in that:
– An address space
– OS resources
– A (kernel) thread

• Threads are concurrent executions sharing an
address space (and some OS resources)

Kernel Threads vs. Processes

• Address spaces provide isolation
– If you can't name it, you can't read or write it

• Hence, communicating between processes is difficult
– Have to go through the OS to move data out of one address

space and into another

• Because threads are in the same address space,
communication is simple/cheap:
– Just update a (non-local) variable!

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 11

Example Opportunities for Threads

• Imagine a web server, which might like to handle multiple
requests concurrently
– While waiting for the credit card server to approve a purchase for

one client, it could be retrieving the data requested by another
client from disk, and assembling the response for a third client from
cached information

• Imagine a web client (browser), which might like to initiate
multiple requests concurrently
– The CSE home page has 46 “src= …” html commands, each of

which is going to involve a lot of sitting around! Wouldn’t it be nice
to be able to launch these requests concurrently?

• Imagine a single parallel program running on a multiprocessor,
which might like to employ “physical concurrency”
– For example, multiplying two large matrices – split the output matrix

into k regions and compute the entries in each region concurrently,
using k processors

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 12

Implementing Threads

• Given the process abstraction as we know it, we could:
– fork several processes
– cause each to map to the same physical memory to share data

• see the shmget() system call for one way to do this (kind of)

• This is like making a pig fly – it’s really inefficient
– space: PCB, page tables, etc.
– time: creating OS structures, fork/copy address space, etc.

• Some equally bad alternatives for some of the examples:
– Entirely separate web servers
– Manually programmed asynchronous programming (non-blocking

I/O) in the web client (browser)

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 13

Can we do better?

• Key idea:
– separate the concept of a process (address space, OS

resources)
– … from that of a minimal “thread of control” (execution

state: stack, stack pointer, program counter, registers)

• This execution state is usually called a thread

thread

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 14

Threads and processes

• Most modern OS’s (Mach (Mac OS), Chorus, Windows, UNIX)
therefore support two entities:
– the process, which defines the address space and general process

attributes (such as open files, etc.)
– the thread, which defines a sequential execution stream within a process

• A thread is bound to a single process / address space
– address spaces, however, can have multiple threads executing within

them
– sharing data between threads is cheap: all see the same address space
– creating threads is cheap too!

• Threads become the unit of scheduling
– processes / address spaces are just containers in which threads execute

04/14/10 © 2007 Gribble, Lazowska, Levy, Zahorjan 15

address
space

thread

Mach, NT,
Chorus,
Linux, …

os kernel

(thread create, destroy,
signal, wait, etc.)

CPU

Kernel threads

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 16

(old) Process address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 17

(new) Address space with threads

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 18

Terminology

• Just a note that there’s the potential for some
confusion …
– Old world: “process” == “address space + OS resources +

single thread”
– New world: “process” typically refers to an address space +

system resources + all of its threads …
• When we mean the “address space” we need to be explicit

 “thread” refers to a single thread of control within a
process / address space

• A bit like “kernel” and “operating system” …
– Old world: “kernel” == “operating system” and runs in

“kernel mode”
– New world: “kernel” typically refers to the microkernel; lots

of the operating system runs in user mode

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 19

The design space

address
space

thread

one thread per process
many processes

many threads per process

many processes

one thread per process
one process

many threads per process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

Key

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 20

Where do (kernel) threads come from?

• Natural answer: the kernel is responsible for
creating/managing threads
– for example, the kernel call to create a new thread would

• allocate an execution stack within the process address space
• create and initialize a Thread Control Block (TCB)

– stack pointer, program counter, register values

• stick it on the ready queue

– There is a “thread name space”
• Thread id's (tid's)
• tid's are integers (surprise!)

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 21

Kernel thread summary

• OS now manages threads and processes / address spaces
– all thread operations are implemented in the kernel

• e.g., thread creation

– OS schedules all of the threads in a system
• if one thread in a process blocks (e.g., on I/O), the OS knows about it, and can run other

threads from that process

• possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes
– less state to allocate and initialize

• But, they’re still pretty expensive for fine-grained use
– orders of magnitude more expensive than a procedure call

– thread operations are all system calls
• context switch

• argument checks

– must maintain kernel state for each thread

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 22

• There is an alternative to kernel threads

• Threads can also be created and managed at the user
level (that is, entirely from within the process)
– a library linked into the program manages the threads

• because threads share the same address space, the thread
manager doesn’t need to manipulate address spaces (which only
the kernel can do)

• threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

• the thread package multiplexes user-level threads on top of kernel
thread(s)

• each kernel thread is treated as a “virtual processor”

• We call these user-level threads

3. User-Level Threads

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 2304/14/10 23

address
space

thread

os kernel

CPU

User-level threads example
user-level

thread library

(thread create, destroy,
signal, wait, etc.)

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 2404/14/10 2404/14/10 24

address
space

thread

os kernel

CPU

User-level threads: what the kernel sees

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 2504/14/10 25

address
space

thread

Mach, NT,
Chorus,
Linux, …

os kernel

(kernel thread create, destroy,
signal, wait, etc.)

CPU

User-level threads: the full story
user-level

thread library

(thread create, destroy,
signal, wait, etc.)

kernel threads

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 26

User-level threads

• User-level threads are small and fast
– managed entirely by user-level library

• e.g., pthreads (libpthreads.a)

– each thread is represented simply by a PC, registers, a stack,
and a small thread control block (TCB)

– creating a thread, switching between threads, and
synchronizing threads are done via procedure calls

• no kernel involvement is necessary!

– user-level thread operations can be 10-100x faster than kernel
threads as a result

• Still need kernel threads...

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 27

Performance example

• On a 700MHz Pentium running Linux 2.2.16 (only the
relative numbers matter; ignore the ancient CPU!):

– Processes
• fork/exit: 251 µs

– Kernel threads
• pthread_create()/pthread_join(): 94 µs (2.5x

faster)

– User-level threads
• pthread_create()/pthread_join: 4.5 µs (another 21x

faster)

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 2804/14/10 28

User-level thread implementation

• The OS dispatches the kernel thread

• This kernel thread executes user code, including the
thread support library and its associated thread
scheduler

• The thread scheduler determines when a user-level
thread runs
– it uses queues to keep track of what threads are doing:

run, ready, wait
• just like the OS and processes
• but, implemented at user-level as a library

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 29

Thread interface

• This is taken from the POSIX pthreads API:

– rcode = pthread_create(&t, attributes, start_procedure)
• creates a new thread of control
• new thread begins executing at start_procedure

– pthread_cond_wait(condition_variable, mutex)
• the calling thread blocks, sometimes called thread_block()

– pthread_signal(condition_variable)
• starts a blocked thread (one waiting on the condition variable)

– pthread_exit()
• terminates the calling thread

– pthread_wait(t)
• waits for the named thread to terminate

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 30

Thread context switch

• Very simple for user-level threads:
– save context of currently running thread

• push CPU state onto thread stack

– restore context of the next thread
• pop CPU state from next thread’s stack

– return as the new thread
• execution resumes at PC of next thread

– Note: no changes to memory mapping required...

• This is all done by assembly language
– it works at the level of the procedure calling convention

• thus, it cannot be implemented using procedure calls

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 31

What if a thread tries to do I/O?

• The kernel thread “powering” it is lost for the duration of the
(synchronous) I/O operation!
– The kernel thread blocks in the OS, as always
– It maroons with it the state of the user-level thread

• Where was it executing? What were the register values?

• Could have one kernel thread “powering” each user-level
thread
– “common case” operations (e.g., synchronization) would be quick

• Could have a limited-size “pool” of kernel threads “powering”
all the user-level threads in the address space
– the kernel will be scheduling these threads, obliviously to what’s going

on at user-level

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 3204/14/10 32

address
space

thread

os kernel

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

(kernel thread create, destroy,
signal, wait, etc.)

CPU

Multiple kernel threads “powering”
each address space

kernel threads

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 33

Addressing This Problem

• Effective coordination of kernel decisions and user-
level threads requires OS to user-level
communication
– OS notifies user-level that it is about to suspend or destroy a

kernel thread

• User-level thread package is then responsible for
multiplexing its threads on the available kernel
threads

• This is called scheduler activations

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 34

4. Task/Work Queues

• Work queues (aka task queues) are yet another
approach to concurrency/parallelism

• A “task” is a method pointer and arguments
– Note: I didn't mention “a stack”

• A task represents work to be done, starting at some
particular procedure, called with a particular set of
arguments

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 35

Work queue picture

head
args args args

fnfnfn

Function
(code)

Function
(code)

Function
(code)

Function
(code)

Work queue

Program

Worker threads

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 36

Why do this?

• One way to think of it is as an application of caching to
improve performance
– We create the worker threads once
– That's caching the work of creating their stacks, initializing TCBs, etc.

• Work queues are most appropriate when the tasks are of
known, finite duration
– Open ended tasks, like “read network packets as they come in and

put them in a queue”, are probably not tasks

• Tasks support fine-grained parallelism
– Not much work in each “unit of parallelism”
– cf. “coarse-grained parallelism”

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 37

An ideal application: row sums

• for (i=0; i<n; i++) {
 b[i] = 0;
 for (j=0; j<m; j++) {
 b[i] += a[i][j];
 }
}

• Turn inner loop into a procedure
• Put n tasks on the queue, all pointing to that procedure, but

with args i=0,1,2,...,n-1
• Notes:

– work is well defined/finite
– The tasks never block

• No worries about marooning a thread

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 38

There are a lot of unanswered questions

• How many threads execute the tasks?
– User-level or kernel threads?

• Should the work queue guarantee any kind of ordering of task
execution? Priorities?

• Can tasks synchronize? How?

• How small should a task be?
– Chunking: Increasing granularity by combining logically distinct tasks

into a single one
• E.g., executing 10 row sums instead of one

• Is it a “task” if it might block?

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 39

5. Event-driven Programming

• Events are are asynchronous software notifications
– Asynchronous: they happen any time

– Software: they are raised by some running code

– Notification: they are not an explicit control flow change
• Not a procedure call

• Note the similarities to work queues

• They're an extremely common programming paradigm
– Especially for GUI programming

– Also for other domains

• Basic control flow:
– Software registers a handler (function) for a particular event type

– When the event occurs, the handler is (eventually) invoked

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 40

Example 1: System Generated Events

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 41

Semantically Richer Events

• Note that the windows events aren't exactly
convenient
– “left button down(100,300)”

• The user clicked on something, but what?

• The software application must convert this to
something meaningful
– Figure out that (100,300) is in “File” in the menu bar

• A distinct event system layer can be built at this
layer, on top of raw events

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 42

Example 2: Javascript

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 43

6. Event-driven Programming Discussion

• The event mechanism decouples the caller from the
callee
– The caller never heard of the callee code

• It just knows the name of an event

– There may be 0, 1, or many handlers registered for an event
• The caller doesn't know or care

• Programmers need to know the event namespace at
coding time
– Not the names of pieces of code (e.g., methods)

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 44

Binding Time

• Binding is the process of translating one name to another name
– E.g., a function name to a memory address

• There are choices...
– Early binding:

• At code time (you embed a procedure name in your code)
• At link time (static libraries)

– Late binding
• At run time (dynamic link libraries)

• Events introduce a level of indirection to binding
– A famous aphorism of David Wheeler goes: “All problems in computer

science can be solved by another level of indirection”
(Wikipedia: indirection)

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 45

More Uses

• Plug-in architectures
– Eclipse, Firefox, ...
– These are frameworks, designed to support multiple as-yet-

unwritten applications “running inside them”
– Plug-in can get event notifications (e.g., button click) and do

whatever it does

• “Publish-subscribe” systems
– Events with guards

• Publish a data record
• Subscribe to data records meeting the guard (criteria)
• Get a notification when a record is published that meets your guard
• Especially handy in distributed systems

04/14/10 © 2010 Gribble, Lazowska, Levy, Zahorjan 46

Summary
• Sometimes (often) multiple threads of control, sharing an address space, is the

easiest way to program functionality
– Threads are handy!

• Kernel threads are much more efficient than processes, but they’re still not cheap
– all operations require a kernel call and argument validation

• User-level threads are:
– fast/cheap

– great for common-case operations

• creation, synchronization, destruction

– can suffer in uncommon cases due to kernel obliviousness

• I/O

• preemption of a lock-holder

• Work queues are even faster/cheaper
– Most appropriate for limited executions

• Event-driven programming is an important specialization / extension

	CSE 451: Operating Systems Autumn 2009 Module 5 Threads
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Concurrency
	How could we achieve this?
	Can we do better?
	Threads and processes
	Kernel threads
	(old) Process address space
	(new) Address space with threads
	Terminology
	The design space
	“Where do threads come from, Mommy?”
	Slide 21
	“Where do threads come from, Mommy?” (2)
	Slide 23
	Slide 24
	Slide 25
	User-level threads
	Performance example
	User-level thread implementation
	Thread interface
	Thread context switch
	What if a thread tries to do I/O?
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Summary

