CSE 451: Operating Systems
Spring 2011

Module 1
Overview

John Zahorjan
zahorjan@cs.washington.edu
534 Allen Center

Module Overview

* Part 1: A history of operating systems

* Part 2: An overview of Unix

What is an Operating System?

* Answers:
— I don't know.
— Nobody knows.
— (The book knows. Read Chapter 1.)

Okay. What Are Its Goals?

* Answers:

— Well, they're programs. They can do anything a
program can do.
— Did I mention they're programs? Big programs?
* The Linux source you'll be compiling has over 1.7M lines
of C code.

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 3

Getting a Grip
* Operating systems are the result of a 60 year
long evolutionary process.

— They were born out of need

 We'll follow a bit of their evolution

* That should help make clear what some of
their functions are, and why

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 4

These Slides vs. Chapter 1

* The text goes describes OS history in much
more detail

— It's an interesting read...

* These slides will try to give a higher level
description, focusing on the impact of this
history on today's systems

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

In the Beginning...

« 1943:

— T.J. Watson (created IBM):
" I think there is a world market for maybe five computers.”

« Fast forward: 1950

— There are maybe 20 computers in the world
— Why do we care?
- They were unbelievably expensive
- Imagine this: machine time is more valuable than person timel!
 Ergo: efficient use of the hardware is paramount
— Operating systems are born
- They carry with them the vestiges of these ancient forces

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

The Primordial Computer

Printer

Diskosaurus
4{ Input Device }

C
- * The input device is very slow
* Minutes to read a job

Memory

* During those minutes, the
mainframe is idle!

* Idea: Let's have a “resident monitor”
load the next job into memory while
the current job is running

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 7

The Resident Monitor Needs
Protection

* This is a good plan, but what happens if the
job in execution:
— Goes into an infinite loop?
— Has a bug and corrupts the resident monitor?

* We need:
— Interrupt/exception mechanism
* Regain use of CPU, no matter what
— Memory protection
+ User program can't overwrite monitor code

— “user mode vs. supervisor mode”
(“user/privileged”, “user/kernel”, “user/root”, ...)

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 8

Hey, That Worked!

« Overlap of job input with job processing resulted in
higher CPU utilization (a good thing)

« The new bottleneck: the diskosaurus
— Disks were (are) slow

— The CPU was spending a lot of time waiting around for
data from the disk

— What to do

» Course theme:
— There are a handful of good/great ideas
— (Re)Use them!

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 9

I/0 Overlap: Parallelism

. Add hardware so that disk operates without tying up the CPU
— Disk controller

. Hotshot programmers could now write code that: CL
— StartsanI/O
— Goes off and does some computing
— Checks if the I/0 is done at some later time

— I'm going to refer to this kind of overlap, whose goal is to improve the
performance of a single “job,” as parallelism

. Upside
— it helps increase CPU utilization

. Downsides

— it's hard to get right (writing a correct program didn't get any easier...)
— the benefits are job specific: is there enough available parallelism?

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 10

I/0 Overlap: Concurrency

(An easier way to exploit physical parallelism)

« Run more than one job at a time
« When one starts an I/0, switch CPU to run a

different one Q\

- Upsides:
— If you have enough jobs in memory, there's always some
CPU work to do

- Downsides:
— Memory allocation issues
Protection of one job from another (memory, disk, CPU)
CPU allocation issues
(Disk I/0 allocation issues)

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 11

Concurrency

. The official name for loading more than one job in memory and
switching the CPU among them is multiprogramming

— All modern systems, even on fairly rudimentary devices, are
multiprogrammed

— Why?

. I'm going to refer to overlapped execution that simplifies
programming effort as concurrency
— Concurrent executions involve parallelism
— They can have beneficial performance impacts for individual applications

— Most often, though, the biggest win is that the computation is more easily
built / managed / understood

. How is multiprogramming concurrency, by that definition?

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

Multiprogramming

Memory
Graphics
Controller CPU OS
Network
Controller A
USB
Controller
_ C
Disk
Controller
Protection Requirements =
Programs execute directly on the CPU,
but cannot touch anything other than
their own memory without OS help
10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

The More Customary Drawing

Applications
oS

Hardware

- This depiction invites you to think of the OS as a library
— Itisn't:
- you use the CPU/memory without OS calls
- itintervenes without having been explicitly called
— Itis:
- all operations on I/0 devices require OS calls (syscalls)
- So long as it is a library as far as I/0 devices go, it might
as well be a useful one
— Presents nicer abstractions to program to than the raw hardware

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

Device Abstractions

+ Examples:
— Raw disk storage =
— Keyboard/mouse =
— Graphics card =
— Network interface card =

— CPU = process (/ thread)
— Memory = virtual address space

- Besides protection, allocation, and performance,
another role of the OS is programming
convenience

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

(Back To) What Is An Operating
System?

User processes

X
A B Windows A B
Server
y R
Window graphics
subsystem subsystem
Windows (OS) Unix

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

Impact of That Decision

X
Windows A B
Server
Interne
e
graphics graphics
subsystem subsystem
Y our home machine attu.cs.washington.edu
10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

Hey, That Worked! (OS Structure)

(So let's try using that idea again)

« OS's evolved as monolithic implementations

user programs

0S everything
hardware
* Pros:
— Fast
+ Cons:
— Complicated
— Inflexible

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Microkernels

firefox powerpoint c
apache 172
P Q)
i
3
file system network o
paging o
threads scheduling
communication g
low-level VM processor 3
protection control o}
hardware
- Pros:
— Flexible
— Debuggable
- Cons:
— Slow
— Can be complicated for applications
10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 19

Exokernel ("No Kernel”)

« Export hardware to user level (in a protected way)

goc " Specialized WWW server

* Pros:

— Flexible

— Arguably more efficient (than microkernel)
« Cons

— Approximately 1.5B existing applications

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 20

Virtual Machine Monitors
Type-2 VMM

Hybrid VMM

Common Virtual Server
Language

Runtime VMWare GSX
(CLR)

Type-1 VMM
(Hypervisor)

VMWare ESX

http://port25.technet.com/photos/images/images/4155/640x480.aspx

* Transparently implement “hardware” in
software

* Voila, you can boot a “guest 0S”

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

(Another aside) Cross-system

10/01/11

Application Portability

Unix System

unixapp.o winapp.exe

libc.so system32.dll
Unix Windows
winapp.exe unixapp.o
wine.so cygwin.dll
Unix Windows

Windows System

© 2011 Gribble, Lazowska, Levy, Zahorjan

22

Core OS Functions

« Programming convenience
— OS provides abstractions / implements objects

« Concurrency
— More than one computation is going on at a time

« Protection
— Which then requires providing ways around protection

« Allocation
— Hardware is shared; no way around that

- Performance / Efficiency
— Achieving user specified objectives

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 23

Recap: What is an Operating System?
* We're still not sure

* An operating system (0S) is:
— a software layer to abstract away and manage
details of hardware resources
— a set of utilities to simplify application development

— “all the code you didn’t write” in order to implement
your application

— the code that runs in privileged mode
The code that enforces allocation policy

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 24

10/01/11

10/01/11

The major OS issues

structure: how is the OS organized?
sharing: how are resources shared across users?
naming: how are resources named (by users or programs)?

security: how is the integrity of the OS and its resources
ensured?

protection: how is one user/program protected from
another?

performance: how do we make it all go fast?

reliability: what happens if something goes wrong (either
with hardware or with a program)?

extensibility: can we add new features?
flexibility: are we in the way of new apps?

communication: how do programs exchange information,
including across a network?

© 2011 Gribble, Lazowska, Levy, Zahorjan 25

More OS issues...

concurrency: how are parallel activities
(computation and I/0) created and controlled?

scale: what happens as demands or resources
increase?

persistence: how do you make data last longer than
program executions?

distribution: how do multiple computers interact
with each other?

accounting: how do we keep track of resource
usage, and perhaps charge for it?

There are tradeoffs, not right and wrong.

© 2011 Gribble, Lazowska, Levy, Zahorjan 26

OS (Unix) Overview

* Processes

* Files

* Directories

* File Representation

* File-oriented System Calls

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyrie PP g

A Program

const int nprimes = 100;
int prime[nprimes];
int main() {
int i;
int current = 2;
prime[0] = current;
for (i=1; i<nprimes; i++) {
int 35
NewCandidate:
current++;
for (j=0; prime[j]*prime[j] <= current; j++) {
if (current % prime[j] == 0)
goto NewCandidate;
}
prime[i] = current;

}

return (0) ;

27

Operating Systems In Depth 1-28 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Processes

Fundamental abstraction of program execution

memory
processor(s) (core(s))

* each processor abstraction is a thread

“execution context”

Operating Systems In Depth 1-29 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

The Unix Address Space

stack

v
4

dynamic
bss

data

text

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyria PP g 30

Modified Program

const int nprimes = 100;
int *prime;
int main(int argc, char *argv([]) {

int i;

int current = 2;

nprimes = atoi(argv[(1]);

prime = (int *)malloc (nprimes*sizeof (int))
prime[0] = current;

for (i=1; i<nprimes; i++) {

}

return (0) ;

Operating Systems In Depth 1-31 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

- <«

fork()

parent process

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyria PP g 32

Creating a Process: After

fork() fork()
// returns p // returns O
parent process child process

(pid = p)

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyrie PP g

Process Control Blocks

PID
Terminated children
) N\ PID
Link
Return code Terminated children
Link] PID
Return code Terminated children
Link
Return code

Process Control
Block

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyria PP g

Fork and Wait

short pid;

if ((pid = fork()) == 0) {
/* some code i1s here for the child to execute */
exit (n);

} else {
int ReturnCode;

while (pid !'= wait (&ReturnCode))
/* the child has terminated with ReturnCode as 1its
return code */

Operating Systems In Depth 1-35 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Exec

int pid;
if ((pid = fork()) == 0) {
/* we’ll soon discuss what might take place before exec
is called */
execl ("/home/twd/bin/primes", "primes", "300", 0);
exit (1) ;
}

/* parent continues here */

while (pid != wait(0)) /* ignore the return code */

14

This is the essence of the implementation of a shell:
$ /home/twd/bin/primes 300

Operating Systems In Depth 1-36 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Loading a New Image

args

7 v

T

prog’s bss
PC prog’s data
~——»lexec(prog, 's text
args) PC prog’s tex
(entry point)
Before After
Copyright © 2010 Thomas W. Doeppner. All rights reserved. 37

Operating Systems In Depth

System Calls

Interface between user and kernel
Typically implemented in two pices:
- a library routines called by user code, and
- a trap instruction in the library routine to enter the kernel

Errors indicated by returns of —1; error code is in errno

if (write(fd, buffer, bufsize) == -1) {
/] error!
printf("error %d\n", errno);
/| see perror

Operating Systems In Depth 1-38 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Multiple Processes

other stuff

kernel stack
L 2

other stuff

kernel stack
L 2

other stuff
kernel stack
v

other stuff
kernel stack
v

kernel text

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyrie PP g

The File Abstraction

Afile is a simple array of bytes
Files are made larger by writing beyond their current end
Files are named by paths in a naming tree

System calls on files are synchronous

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyria PP g

Naming

(almost) everything has a path name
files

directories
devices (known as special files)

* keyboards

* displays
* disks
* etc.
Operating Systems In Depth 1-41 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

// opening a normal file
int file = open("/home/twd/data", O_RDWR);

// opening a device (one’s terminal or window)
int device = open("/dev/tty", O_ RDWR);

// either way, this works
int bytes = read(file, buffer, sizeof(buffer));
write(device, buffer, bytes);

Operating Systems In Depth 1-42 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Working Directory

Maintained in kernel for each process

paths not starting from “/” start with the working directory
changed by use of the chdir system call
displayed (via shell) using “pwd”

* how is this done?

Operating Systems In Depth 1-43 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

File number Name Use
0 stdin Input
1 stdout Normal output
2 stderr Error output
main() {
char buf[BUFSIZE];
int n;

const char* note = "Write failed\n";
while ((n = read(0, buf, sizeof(buf))) > 0)
if (write(1, buf, n) '=n) {
(void)write(2, note, strlen(note));
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

Operating Systems In Depth 1-44 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Back to Primes ...

int nprimes;
int *prime;
int main(int argc, char *argv([]) {

for (i=1; i<nprimes; i++) {

}

if (write(l, prime, nprimes*sizeof (int)) == -1) {
perror ("primes output");
exit (1) ;

}

return (0) ;

}
Operating Systems In Depth |-45 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv([]) {

for (i=1; i<nprimes; i++) {

}

for (i=0; i<nprimes; i++) {
printf ("$d\n", primelil);

}

return (0) ;

Operating Systems In Depth 1-46 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Running It

if (fork() == 0) {
/* set up file descriptor 1 in the child process */
close(1l);
if (open("/home/twd/Output", O WRONLY) == -1) {
perror (" /home/twd/Output") ;
exit (1) ;

}

execl ("/home/twd/bin/primes", "primes",
exit (1) ;

"300|v, O),

}
/* parent continues here */
while (pid != wait(0)) /* ignore the return code */

14

$ /home/twd/bin/primes 300 >/home/twd/Output

Operating Systems In Depth 1-47 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

File-Descriptor Table

File-descriptor
table

0
1
2
3
File
. —)
descriptor . \ ref |access| file inode

count | mode |location| pointer

User
address space

n-1

Kernel address space

48

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyria PP g

Allocation of File Descriptors

Whenever a process requests a new file descriptor, the lowest
numbered file descriptor not already associated with an open file is
selected; thus

#include <fcntl.h>

#include <unistd.h>

close(0);
fd = open("file", O_RDONLY);

will always associate file with file descriptor 0 (assuming that the
open succeeds)

Operating Systems In Depth 1-49 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Redirecting Output ... Twice

if (fork() == 0) {
/* set up file descriptors 1 and 2 in the child process */
close (1),
close (2);

if (open("/home/twd/Output", O WRONLY) == -1) {
exit (1) ;

}

if (open("/home/twd/Output", O WRONLY) == -1) {
exit (1) ;

}

execl ("/home/twd/bin/program", "program", 0);
exit (1) ;
}

/* parent continues here */

$ /home/twd/bin/primes 300 >/home/twd/Output 2>/home/twd/Output

Operating Systems In Depth 1-50 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Redirected Output

File descriptor 1 =

File descriptor 2 =

User

address space

File-descriptor

table

/} 1 WRONLY 0 in,Ode
pointer

1 WRONLY 0 in,Ode

pointer

Kernel address space

Operating Systems In Depth Copyright © 2010 Thomas W. Doeppner. All rights reserved. 51
File-descriptor
fable inode
File descriptor 1 = f ! BIRORLY | pointer
File descriptor 2 = -
1 WRONLY 0 m,Ode
pointer
User
address space
Kernel address space
Copyright © 2010 Thomas W. Doeppner. All rights reserved. 52

Operating Systems In Depth

Sharing Context Information

if (fork() == 0) {
/* set up file descriptors 1 and 2 in the child process */
close (1),
close(2);
if (open("/home/twd/Output", O WRONLY) == -1) {
exit (1) ;

}
dup(l); /* set up file descriptor 2 as a duplicate of 1 */

execl ("/home/twd/bin/program", "program", 0);
exit (1) ;
}

/* parent continues here */

$ /home/twd/bin/primes 300 >/home/twd/Output 2>&1

Operating Systems In Depth 1-53 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Redirected Output After Dup

File-descriptor

table
File descriptor 1 =) .
2 WRONLY [100 Ingde
N pointer

File descriptor 2 =—

User
address space

Kernel address space

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth 54

Fork and File Descriptors

int logfile = open("log", O WRONLY) ;

if (fork() == 0) {
/* child process computes something, then does: */
write(logfile, LogEntry, strlen(LogEntry)):;

exit (0);
}

/* parent process computes something, then does: */

write(logfile, LogEntry, strlen (LogEntry));

Operating Systems In Depth 1-55 Copyright © 2010 Thomas W. Doeppner. Al rights reserved.

File Descriptors After Fork

logfile
Parent’s inode
address space 2 WRONLY 0)
> pointer
(1
logfile
Child’s
address space
Kernel address space
Copyright © 2010 Thomas W. Doeppner. All rights reserved. 56

Operating Systems In Depth

Directories

unix | etc |home| pro | dev

A 4
passwd [motd twd
unix
A 4
slidel | slide2
Copyright © 2010 Thomas W. Doeppner. All rights reserved. 57

Operating Systems In Depth

Directory Representation

Component Name Inode Number

directory entry

1
1
unix 117
etc 4
home 18
pro 36
dev 93
Copyright © 2010 Thomas W. Doeppner. Al rights reserved. 58

Operating Systems In Depth

Hard Links

unix | etc |home| pro | dev

twd

unix

image | motd

A 4

slidel | slide2

% In /unix /etc/image
link system call

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyrie PP g 59

Soft Links

unix | etc |home| pro | dev

twd

unix | ... |mylink

A 4
slidel | slide2 m

% In -s /unix /home/twd/myllnk
% In -s /home/twd /etc/twd

symlink system call

imPge twd

. Copyright © 2010 Thomas W. Doeppner. All rights reserved.
Operating Systems In Depth pyria PP g 60

Open

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int options [, mode_t mode])

options
* O_RDONLY open for reading only
* O_WRONLY open for writing only
* O_RDWR open for reading and writing
* O_APPEND set the file offset to end of file prior to each write
* O_CREAT if the file does not exist, then create it,
setting its mode to mode adjusted by umask
« O_EXCL if O_EXCL and O_CREAT are set, then
open fails if the file exists
« O_TRUNC delete any previous contents of the file
* O_NONBLOCK don’t wait if I/O can’t be done immediately
Operating Systems In Depth 1-61 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

File Access Permissions

Who'’s allowed to do what?

who

* user (owner)

* group

* others (rest of the world)
what

* read

* write

* execute

Operating Systems In Depth 1-62 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Permissions Example

% Is -IR

total 2

drwxr-x--x 2 tom adm 1024 Dec 17 13:34 A
drwxr——---—- 2 tom adm 1024 Dec 17 13:34 B
/A

total 1

-rw-rw—-rw— 1 tom adm 593 Dec 17 13:34 x
./B:

total 2

-r-—-rw-rw— 1 tom adm 446 Dec 17 13:34 x
-rw-—---rw—- 1 trina adm 446 Dec 17 13:45 y

Operating Systems In Depth 1-63 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode)

sets the file permissions of the given file to those specified in mode

only the owner of a file and the superuser may change its
permissions

nine combinable possibilities for mode (read/write/execute for
user, group, and others)

« S_IRUSR (0400), S_IWUSR (0200), S_IXUSR (0100)
 S_IRGRP (040), S_IWGRP (020), S_IXGRP (010)
« S_IROTH (04), S_IWOTH (02), S_IXOTH (01)

Operating Systems In Depth 1-64 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Creating a File

Use either open or creat
open (const char *pathname, int flags, mode_t mode)

* flags mustinclude O_CREAT
creat(const char *pathname, mode_t mode)
* open is preferred

The mode parameter helps specify the permissions of the newly created file
permissions = mode & ~umask

Operating Systems In Depth 1-65 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Umask

Standard programs create files with “maximum needed permissions”
as mode
compilers: 0777

editors: 0666

Per-process parameter, umask, used to turn off undesired
permission bits
e.g., turn off all permissions for others, write permission for
group: set umask to 027

* compilers: permissions = 0777 & ~(027) = 0750
* editors: permissions = 0666 & ~(027) = 0640

set with umask system call or (usually) shell command

Operating Systems In Depth 1-66 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

What Else?

Beyond Sixth-Edition Unix (1975)
multiple threads per process

* how is the process model affected?
virtual memory

e fork?
interactive, multimedia user interface

¢ scheduling?

networking

security

Operating Systems In Depth 1-67 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Final Note: Performance

* We've just seen a survey of the functionality
offered by an OS

* Another side of the coin is the performance of
the OS

— if operations are slow, some applications can't run

* From repeated experience...
— Build fast and simple at the low levels
* You can layer functionality on top

* You can't “unlayer” overheads for facilities you don't
need

A Sense of Absolute Costs

Obtained using Imbench
Proc AMD Athlon 64 X2 (2.8GHz, 0.358 nsec. Clock)
oS Linux 2.6.31.4
32-bit int add 2.3 nsec int parallelism 1.26
32-bit int div 47.6 nsec
float add 2.5 nsec float parallelism 2.7
float div 18.1 nsec
null syscall 220.2 nsec
stat 1,311.1 nsec
file open/close 2,727.6 nsec.
sig hdlr install 326.5 nsec.
sig hdlIr ovrhd 1,602.5 nsec
protection fault 303.1 nsec
page fault 1,556.7 nsec.
ctx switch 2,290.0 nsec. 2 processes writing 0 data bytes
5,270.0 nsec. 2 processes writing 64KB data
22,470.0 nsec. 16 processes writing 64KB data
fork 331,500.0 nsec
fork + exec 342,400.0 nsec.
fork + sh cmd 1,960,700.0 nsec.
disk seek 6,000,000.0 nsec. highly variable
disk xfer rate 50,000.0 nsec./4KB highly variable

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan

69

