
CSE 451: Operating Systems

Spring 2011

Module 1

Overview

John Zahorjan

zahorjan@cs.washington.edu

534 Allen Center

Module Overview

� Part 1: A history of operating systems

� Part 2: An overview of Unix

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 3

What is an Operating System?

� Answers:
� I don't know.

� Nobody knows.

� (The book knows. Read Chapter 1.)

Okay. What Are Its Goals?

� Answers:
� Well, they're programs. They can do anything a

program can do.

� Did I mention they're programs? Big programs?
� The Linux source you'll be compiling has over 1.7M lines

of C code.

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 4

Getting a Grip

� Operating systems are the result of a 60 year
long evolutionary process.
� They were born out of need

� We'll follow a bit of their evolution

� That should help make clear what some of
their functions are, and why

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 5

These Slides vs. Chapter 1

� The text goes describes OS history in much
more detail
� It's an interesting read...

� These slides will try to give a higher level
description, focusing on the impact of this
history on today's systems

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 6

In the Beginning...

� 1943:
� T.J. Watson (created IBM):

 � I think there is a world market for maybe five computers.�

� Fast forward: 1950
� There are maybe 20 computers in the world

� Why do we care?

� They were unbelievably expensive

� Imagine this: machine time is more valuable than person time!

� Ergo: efficient use of the hardware is paramount

� Operating systems are born

� They carry with them the vestiges of these ancient forces

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 7

The Primordial Computer

CPU
Diskosaurus

Memory

Printer

Input Device

� The input device is very slow

� Minutes to read a job
� During those minutes, the

 mainframe is idle!
� Idea: Let's have a �resident monitor�

 load the next job into memory while

 the current job is running

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 8

The Resident Monitor Needs
Protection

� This is a good plan, but what happens if the
job in execution:
� Goes into an infinite loop?

� Has a bug and corrupts the resident monitor?

� We need:
� Interrupt/exception mechanism

� Regain use of CPU, no matter what

� Memory protection
� User program can't overwrite monitor code

� �user mode vs. supervisor mode�
(�user/privileged�, �user/kernel�, �user/root�, ...)

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 9

Hey, That Worked!

� Overlap of job input with job processing resulted in
higher CPU utilization (a good thing)

� The new bottleneck: the diskosaurus
� Disks were (are) slow

� The CPU was spending a lot of time waiting around for
data from the disk

� What to do

� Course theme:
� There are a handful of good/great ideas

� (Re)Use them!

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 10

I/O Overlap: Parallelism

� Add hardware so that disk operates without tying up the CPU

� Disk controller

� Hotshot programmers could now write code that:

� Starts an I/O

� Goes off and does some computing

� Checks if the I/O is done at some later time

� I'm going to refer to this kind of overlap, whose goal is to improve the
performance of a single �job,� as parallelism

� Upside

� it helps increase CPU utilization

� Downsides

� it's hard to get right (writing a correct program didn't get any easier...)

� the benefits are job specific: is there enough available parallelism?

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 11

I/O Overlap: Concurrency
(An easier way to exploit physical parallelism)

� Run more than one job at a time

� When one starts an I/O, switch CPU to run a
different one

� Upsides:

� If you have enough jobs in memory, there's always some
CPU work to do

� Downsides:

� Memory allocation issues

� Protection of one job from another (memory, disk, CPU)

� CPU allocation issues

� (Disk I/O allocation issues)

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

Concurrency

� The official name for loading more than one job in memory and
switching the CPU among them is multiprogramming

� All modern systems, even on fairly rudimentary devices, are
multiprogrammed

� Why?

� I'm going to refer to overlapped execution that simplifies
programming effort as concurrency

� Concurrent executions involve parallelism

� They can have beneficial performance impacts for individual applications

� Most often, though, the biggest win is that the computation is more easily
built / managed / understood

� How is multiprogramming concurrency, by that definition?

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

Multiprogramming

CPU OS

A

B

C

Memory
Graphics

Controller

Network

Controller

USB

Controller

Disk

Controller

Protection Requirements ⇒

 Programs execute directly on the CPU,

 but cannot touch anything other than

 their own memory without OS help

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

The More Customary Drawing

Applications

OS

Hardware

� This depiction invites you to think of the OS as a library

� It isn't:

� you use the CPU/memory without OS calls

� it intervenes without having been explicitly called

� It is:

� all operations on I/O devices require OS calls (syscalls)

� So long as it is a library as far as I/O devices go, it might
as well be a useful one

� Presents nicer abstractions to program to than the raw hardware

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

Device Abstractions

� Examples:
� Raw disk storage ⇒

� Keyboard/mouse ⇒

� Graphics card ⇒

� Network interface card ⇒

� CPU ⇒ process (/ thread)

� Memory ⇒ virtual address space

� Besides protection, allocation, and performance,
another role of the OS is programming
convenience

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

(Back To) What Is An Operating
System?

Window

subsystem

A B

Windows (OS)

User processes

graphics

subsystem

A B

Unix

X

Windows

Server

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

Impact of That Decision

graphics

subsystem

A B

graphics

subsystem

X

Windows

Server

Your home machine

Internet

attu.cs.washington.edu

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Hey, That Worked! (OS Structure)
(So let's try using that idea again)

everything

user programs

hardware

OS

� OS's evolved as monolithic implementations

� Pros:
� Fast

� Cons:
� Complicated

� Inflexible

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 19

Microkernels

� Pros:

� Flexible

� Debuggable

� Cons:

� Slow

� Can be complicated for applications

hardware

low-level VM

communication

protection

processor

control

file system

threads

network

scheduling
paging

firefox powerpoint

apache

u
s
e
r m

o
d
e

k
e
rn

e
l

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 20

Exokernel (�No Kernel�)

� Export hardware to user level (in a protected way)

� Pros:
� Flexible

� Arguably more efficient (than microkernel)

� Cons
� Approximately 1.5B existing applications

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 21

� Transparently implement �hardware� in
software

� Voilà, you can boot a �guest OS�

http://port25.technet.com/photos/images/images/4155/640x480.aspx

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 22

(Another aside) Cross-system
Application Portability

unixapp.o

libc.so

Unix

winapp.exe

system32.dll

Windows

winapp.exe

wine.so

Unix

unixapp.o

cygwin.dll

Windows

Unix System Windows System

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 23

Core OS Functions

� Programming convenience
� OS provides abstractions / implements objects

� Concurrency
� More than one computation is going on at a time

� Protection
� Which then requires providing ways around protection

� Allocation
� Hardware is shared; no way around that

� Performance / Efficiency
� Achieving user specified objectives

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 24

Recap: What is an Operating System?

� We're still not sure

� An operating system (OS) is:
� a software layer to abstract away and manage

details of hardware resources

� a set of utilities to simplify application development

� �all the code you didn�t write� in order to implement
your application

� the code that runs in privileged mode

� The code that enforces allocation policy

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 25

The major OS issues

� structure: how is the OS organized?

� sharing: how are resources shared across users?

� naming: how are resources named (by users or programs)?

� security: how is the integrity of the OS and its resources
ensured?

� protection: how is one user/program protected from
another?

� performance: how do we make it all go fast?

� reliability: what happens if something goes wrong (either
with hardware or with a program)?

� extensibility: can we add new features?

� flexibility: are we in the way of new apps?

� communication: how do programs exchange information,
including across a network?

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 26

More OS issues�

� concurrency: how are parallel activities
(computation and I/O) created and controlled?

� scale: what happens as demands or resources
increase?

� persistence: how do you make data last longer than
program executions?

� distribution: how do multiple computers interact
with each other?

� accounting: how do we keep track of resource
usage, and perhaps charge for it?

There are tradeoffs, not right and wrong.

Operating Systems In Depth 27Copyright © 2010 Thomas W. Doeppner. All rights reserved.

OS (Unix) Overview

� Processes

� Files

� Directories

� File Representation

� File-oriented System Calls

Operating Systems In Depth I�28 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

A Program

const int nprimes = 100;
int prime[nprimes];
int main() {
 int i;
 int current = 2;
 prime[0] = current;
 for (i=1; i<nprimes; i++) {
 int j;
 NewCandidate:
 current++;
 for (j=0; prime[j]*prime[j] <= current; j++) {
 if (current % prime[j] == 0)
 goto NewCandidate;
 }
 prime[i] = current;
 }
 return(0);
}

Operating Systems In Depth I�29 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Processes

Fundamental abstraction of program execution

memory

processor(s) (core(s))

� each processor abstraction is a thread

�execution context�

Operating Systems In Depth 30Copyright © 2010 Thomas W. Doeppner. All rights reserved.

The Unix Address Space

text

data

bss

dynamic

stack

Operating Systems In Depth I�31 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Modified Program

const int nprimes = 100;
int *prime;

int main(int argc, char *argv[]) {
 int i;
 int current = 2;
 nprimes = atoi(argv[1]);
 prime = (int *)malloc(nprimes*sizeof(int))
 prime[0] = current;
 for (i=1; i<nprimes; i++) {

 �

 }
 return(0);
}

Operating Systems In Depth 32Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

fork()

parent process

Operating Systems In Depth 33Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Creating a Process: After

fork()
// returns p

parent process

fork()
// returns 0

child process

(pid = p)

Operating Systems In Depth 34Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Process Control Blocks
PID

Terminated children

Link

Return code

Process Control

Block

PID

Terminated children

Link

Return code

PID

Terminated children

Link

Return code

Operating Systems In Depth I�35 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Fork and Wait

short pid;
if ((pid = fork()) == 0) {
 /* some code is here for the child to execute */
 exit(n);
} else {
 int ReturnCode;
 while(pid != wait(&ReturnCode))
 ;
 /* the child has terminated with ReturnCode as its
 return code */
}

Operating Systems In Depth I�36 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Exec

int pid;
if ((pid = fork()) == 0) {
 /* we�ll soon discuss what might take place before exec
 is called */
 execl("/home/twd/bin/primes", "primes", "300", 0);
 exit(1);
}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */
 ;

This is the essence of the implementation of a shell:

 $ /home/twd/bin/primes 300

Operating Systems In Depth 37Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Loading a New Image

exec(prog,
args)

Before

prog�s text

prog�s data

prog�s bss

args

After

PC

 PC
(entry point)

Operating Systems In Depth I�38 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

System Calls

Interface between user and kernel

Typically implemented in two pices:
 - a library routines called by user code, and
 - a trap instruction in the library routine to enter the kernel

Errors indicated by returns of �1; error code is in errno

if (write(fd, buffer, bufsize) == �1) {

// error!

printf("error %d\n", errno);

// see perror

}

Operating Systems In Depth 39Copyright © 2010 Thomas W. Doeppner. All rights reserved.

other stuff

kernel stack

other stuff

kernel stack

other stuff

kernel stack

other stuff

kernel stack

Multiple Processes

kernel text

Operating Systems In Depth 40Copyright © 2010 Thomas W. Doeppner. All rights reserved.

The File Abstraction

A file is a simple array of bytes

Files are made larger by writing beyond their current end

Files are named by paths in a naming tree

System calls on files are synchronous

Operating Systems In Depth I�41 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Naming

(almost) everything has a path name
files

directories

devices (known as special files)

� keyboards

� displays

� disks

� etc.

Operating Systems In Depth I�42 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Uniformity

// opening a normal file
int file = open("/home/twd/data", O_RDWR);

// opening a device (one�s terminal or window)
int device = open("/dev/tty", O_RDWR);

// either way, this works
int bytes = read(file, buffer, sizeof(buffer));
write(device, buffer, bytes);

Operating Systems In Depth I�43 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Working Directory

Maintained in kernel for each process

paths not starting from �/� start with the working directory

changed by use of the chdir system call

displayed (via shell) using �pwd�

� how is this done?

Operating Systems In Depth I�44 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

main() {

char buf[BUFSIZE];

int n;

const char* note = "Write failed\n";

while ((n = read(0, buf, sizeof(buf))) > 0)

if (write(1, buf, n) != n) {

(void)write(2, note, strlen(note));

exit(EXIT_FAILURE);

}

return(EXIT_SUCCESS);

}

File number Name Use

0 stdin Input

1 stdout Normal output

2 stderr Error output

Operating Systems In Depth I�45 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Back to Primes �

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 �
 for (i=1; i<nprimes; i++) {
 �
 }
 if (write(1, prime, nprimes*sizeof(int)) == -1) {
 perror("primes output");
 exit(1);
 }
 return(0);
}

Operating Systems In Depth I�46 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Human-Readable Output

int nprimes;
int *prime;
int main(int argc, char *argv[]) {
 �
 for (i=1; i<nprimes; i++) {
 �
 }
 for (i=0; i<nprimes; i++) {
 printf("%d\n", prime[i]);
 }
 return(0);
}

Operating Systems In Depth I�47 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Running It

if (fork() == 0) {
 /* set up file descriptor 1 in the child process */
 close(1);
 if (open("/home/twd/Output", O_WRONLY) == -1) {
 perror("/home/twd/Output");
 exit(1);
 }
 execl("/home/twd/bin/primes", "primes", "300", 0);
 exit(1);
}

/* parent continues here */

while(pid != wait(0)) /* ignore the return code */
 ;

 $ /home/twd/bin/primes 300 >/home/twd/Output

Operating Systems In Depth 48Copyright © 2010 Thomas W. Doeppner. All rights reserved.

File-Descriptor Table

0
1
2
3

.

.

.

n�1

File-descriptor

table

File

descriptor

User

address space

Kernel address space

ref

count

access

mode

file

location

inode

pointer

Operating Systems In Depth I�49 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Allocation of File Descriptors

Whenever a process requests a new file descriptor, the lowest
numbered file descriptor not already associated with an open file is
selected; thus

#include <fcntl.h>
#include <unistd.h>

close(0);
fd = open("file", O_RDONLY);

will always associate file with file descriptor 0 (assuming that the
open succeeds)

Operating Systems In Depth I�50 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Redirecting Output � Twice

if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child process */
 close(1);
 close(2);
 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);
 }
 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);
 }
 execl("/home/twd/bin/program", "program", 0);
 exit(1);
}

/* parent continues here */

 $ /home/twd/bin/primes 300 >/home/twd/Output 2>/home/twd/Output

Operating Systems In Depth 51Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Redirected Output

File-descriptor

table

File descriptor 1

User

address space

Kernel address space

File descriptor 2

1 WRONLY 0
inode

pointer

1 WRONLY 0
inode

pointer

Operating Systems In Depth 52Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Redirected Output After Write

File-descriptor

table

File descriptor 1

User

address space

Kernel address space

File descriptor 2

1 WRONLY 100
inode

pointer

1 WRONLY 0
inode

pointer

Operating Systems In Depth I�53 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Sharing Context Information

if (fork() == 0) {
 /* set up file descriptors 1 and 2 in the child process */
 close(1);
 close(2);
 if (open("/home/twd/Output", O_WRONLY) == -1) {
 exit(1);
 }
 dup(1); /* set up file descriptor 2 as a duplicate of 1 */
 execl("/home/twd/bin/program", "program", 0);
 exit(1);
}
/* parent continues here */

 $ /home/twd/bin/primes 300 >/home/twd/Output 2>&1

Operating Systems In Depth 54Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Redirected Output After Dup

File-descriptor

table

File descriptor 1

User

address space

Kernel address space

File descriptor 2

2 WRONLY 100
inode

pointer

Operating Systems In Depth I�55 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Fork and File Descriptors

int logfile = open("log", O_WRONLY);
if (fork() == 0) {
 /* child process computes something, then does: */
 write(logfile, LogEntry, strlen(LogEntry));
 �
 exit(0);
}

/* parent process computes something, then does: */

write(logfile, LogEntry, strlen(LogEntry));
�

Operating Systems In Depth 56Copyright © 2010 Thomas W. Doeppner. All rights reserved.

File Descriptors After Fork

logfile

Parent�s

address space

Kernel address space

2 WRONLY 0
inode

pointer

logfile

Child�s

address space

Operating Systems In Depth 57Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Directories

unix etc home pro dev

twdpasswd motd

unix ...

slide1 slide2

Operating Systems In Depth 58Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Directory Representation

Component Name Inode Number

unix 117

etc 4

home 18

pro 36

dev 93

directory entry

. 1

.. 1

Operating Systems In Depth 59Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Hard Links

unix etc home pro dev

twd

image motd
unix ...

slide1 slide2

% ln /unix /etc/image

link system call

Operating Systems In Depth 60Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Soft Links

unix etc home pro dev

twd

image twd
unix ...

slide1 slide2

% ln �s /unix /home/twd/mylink

% ln �s /home/twd /etc/twd

symlink system call

mylink

/unix
/home/twd

Operating Systems In Depth I�61 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Open
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *path, int options [, mode_t mode])

options

� O_RDONLY open for reading only

� O_WRONLY open for writing only

� O_RDWR open for reading and writing

� O_APPEND set the file offset to end of file prior to each write

� O_CREAT if the file does not exist, then create it,
setting its mode to mode adjusted by umask

� O_EXCL if O_EXCL and O_CREAT are set, then
open fails if the file exists

� O_TRUNC delete any previous contents of the file

� O_NONBLOCK don�t wait if I/O can�t be done immediately

Operating Systems In Depth I�62 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

File Access Permissions

Who�s allowed to do what?
who

� user (owner)

� group

� others (rest of the world)

what

� read

� write

� execute

Operating Systems In Depth I�63 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Permissions Example

% ls -lR
.:
total 2
drwxr-x--x 2 tom adm 1024 Dec 17 13:34 A
drwxr----- 2 tom adm 1024 Dec 17 13:34 B

./A:
total 1
-rw-rw-rw- 1 tom adm 593 Dec 17 13:34 x

./B:
total 2
-r--rw-rw- 1 tom adm 446 Dec 17 13:34 x
-rw----rw- 1 trina adm 446 Dec 17 13:45 y

Operating Systems In Depth I�64 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode)

sets the file permissions of the given file to those specified in mode

only the owner of a file and the superuser may change its
permissions

nine combinable possibilities for mode (read/write/execute for
user, group, and others)

� S_IRUSR (0400), S_IWUSR (0200), S_IXUSR (0100)

� S_IRGRP (040), S_IWGRP (020), S_IXGRP (010)

� S_IROTH (04), S_IWOTH (02), S_IXOTH (01)

Operating Systems In Depth I�65 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Creating a File

Use either open or creat
open (const char *pathname, int flags, mode_t mode)

� flags must include O_CREAT

creat(const char *pathname, mode_t mode)

� open is preferred

The mode parameter helps specify the permissions of the newly created file
permissions = mode & ~umask

Operating Systems In Depth I�66 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

Umask

Standard programs create files with �maximum needed permissions�
as mode

compilers: 0777

editors: 0666

Per-process parameter, umask, used to turn off undesired
permission bits

e.g., turn off all permissions for others, write permission for
group: set umask to 027

� compilers: permissions = 0777 & ~(027) = 0750

� editors: permissions = 0666 & ~(027) = 0640

set with umask system call or (usually) shell command

Operating Systems In Depth I�67 Copyright © 2010 Thomas W. Doeppner. All rights reserved.

What Else?

Beyond Sixth-Edition Unix (1975)
multiple threads per process

� how is the process model affected?

virtual memory

� fork?

interactive, multimedia user interface

� scheduling?

networking

security

Final Note: Performance

� We've just seen a survey of the functionality
offered by an OS

� Another side of the coin is the performance of
the OS
� if operations are slow, some applications can't run

� From repeated experience...
� Build fast and simple at the low levels

� You can layer functionality on top

� You can't �unlayer� overheads for facilities you don't
need

10/01/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 69

A Sense of Absolute Costs

OS Linux 2.6.31.4

32-bit int add 2.3 int parallelism 1.26

32-bit int div 47.6

float add 2.5 float parallelism 2.7

float div 18.1

220.2

stat 1,311.1

file open/close 2,727.6

326.5

1,602.5

protection fault 303.1

page fault 1,556.7

2,290.0 2 processes writing 0 data bytes

5,270.0 2 processes writing 64KB data

22,470.0 16 processes writing 64KB data

fork 331,500.0

fork + exec 342,400.0

1,960,700.0

disk seek 6,000,000.0 highly variable

50,000.0 highly variable

Proc AMD Athlon 64 X2 (2.8GHz, 0.358 nsec. Clock)

nsec

nsec

nsec

nsec

null syscall nsec

nsec

nsec.

sig hdlr install nsec.

sig hdlr ovrhd nsec

nsec

nsec.

ctx switch nsec.

nsec.

nsec.

nsec

nsec.

fork + sh cmd nsec.

nsec.

disk xfer rate nsec./4KB

Obtained using lmbench

