

CSE Section 451

Corrections

● You don't need to resize your hash tables.
● To clarify part 3, you only need to implement

the functions in the enum described in the .h.
Not MEAN, which is sort of mentioned in the
write-up.

● To clarify part 1, you do not need to submit
tests showing the bugs in the code.

3

Project 0
 How is it going?
 What's happening here?

key == ht[loc]->key
 Bad! Comparing pointers.

 Need a “deep equals”
 Must pass in an equality function
 Worry about it for this project

 Also, don’t forget about resizing!
 And memory management
 And memory leaks
 And edge cases
 And fun

Part 3. What not to do.

If you do this:

if (mathfunctype_t == ADD) {

 ret = add(...);

} else if …

You're doing it wrong. Please do not do this.

Project 0 Questions?

Always feel free to ask questions.
Concept question are what we want you to learn.

C problems are what we want to help you get
past.

How is the class going?

Shells

● Primary Responsibilities:
● Parse user commands
● Execute commands / programs
● Manage input and output streams
● Job control

The Unix Shell

● Internal commands
● Built-in commands. Executes routines in the shell.
● Manages state of the shell.

● External commands
● Everything else like cp, ls, ln, cat, etc.

How can you tell the difference? External
commands follow fork/exec.

Other capabilities

● Redirect standard input / output / error

./parser < logfile > outfile 2> errfile
● Command pipelines

ps –ef | grep java | awk ‘{print $2}’
● Background execution

time make > make.out &

jobs

[1]+ Running time make > make.out &

10

The CSE451 shell

 Print out prompt
 Accept input
 Parse input
 If built-in command

 do it directly
 Else spawn new

process
 Launch specified

program
 Wait for it to finish

 Repeat

CSE451Shell% /bin/date
Fri Jan 16 00:05:39 PST 2004
CSE451Shell% pwd
/root
CSE451Shell% cd /
CSE451Shell% pwd
/
CSE451Shell% exit

Fork and Wait

short pid;

if ((pid = fork()) == 0) {

/* some code is here for the child to execute */
exit(n);

} else {
int ReturnCode;

while(pid != wait(&ReturnCode))

;

/* the child has terminated with ReturnCode as its

return code */

}

What is fork returning? What is wait really doing?

Mommy, where do processes go
when they die?

● What happens to a Process Control Block when
a process completes?
● What happens to its data? What if the data is

needed?

● When a process completes, it goes into a
ZOMBIE state.
● It's PCB isn't reclaimed or cleaned until the parent

can check its status using wait() (or waitpid() or wait
id())

Wait

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

int waitid(idtype_t idtype, id_t id, siginfo_t
*infop, int options);

Exec

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

is called */
execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0))

;

What happens to the process in exec? What is exit() called
with an error?

Exec

● The process is complete overwritten (code,
data, everything) and loaded in its place is the
binary of the program.

● Why is exit an error then?
● Because the line of code should no longer exist if

exec behaves correctly. If exec ever returns, it is
because it failed.

Fork/Exec

● Fork is THE way in Linux to create processes.
● Fork is commonly followed by exec.

● Does that fire any red flags? Why are we copying a
process only to destroy it? Isn't that horribly
inefficient?

Fork/exec have both been optimized to not be
terrible, particularly in the case they are used
together. More on that when we talk about virtual
memory.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

