

CSE Section 451

Corrections

● You don't need to resize your hash tables.
● To clarify part 3, you only need to implement

the functions in the enum described in the .h.
Not MEAN, which is sort of mentioned in the
write-up.

● To clarify part 1, you do not need to submit
tests showing the bugs in the code.

3

Project 0
 How is it going?
 What's happening here?

key == ht[loc]->key
 Bad! Comparing pointers.

 Need a “deep equals”
 Must pass in an equality function
 Worry about it for this project

 Also, don’t forget about resizing!
 And memory management
 And memory leaks
 And edge cases
 And fun

Part 3. What not to do.

If you do this:

if (mathfunctype_t == ADD) {

 ret = add(...);

} else if …

You're doing it wrong. Please do not do this.

Project 0 Questions?

Always feel free to ask questions.
Concept question are what we want you to learn.

C problems are what we want to help you get
past.

How is the class going?

Shells

● Primary Responsibilities:
● Parse user commands
● Execute commands / programs
● Manage input and output streams
● Job control

The Unix Shell

● Internal commands
● Built-in commands. Executes routines in the shell.
● Manages state of the shell.

● External commands
● Everything else like cp, ls, ln, cat, etc.

How can you tell the difference? External
commands follow fork/exec.

Other capabilities

● Redirect standard input / output / error

./parser < logfile > outfile 2> errfile
● Command pipelines

ps –ef | grep java | awk ‘{print $2}’
● Background execution

time make > make.out &

jobs

[1]+ Running time make > make.out &

10

The CSE451 shell

 Print out prompt
 Accept input
 Parse input
 If built-in command

 do it directly
 Else spawn new

process
 Launch specified

program
 Wait for it to finish

 Repeat

CSE451Shell% /bin/date
Fri Jan 16 00:05:39 PST 2004
CSE451Shell% pwd
/root
CSE451Shell% cd /
CSE451Shell% pwd
/
CSE451Shell% exit

Fork and Wait

short pid;

if ((pid = fork()) == 0) {

/* some code is here for the child to execute */
exit(n);

} else {
int ReturnCode;

while(pid != wait(&ReturnCode))

;

/* the child has terminated with ReturnCode as its

return code */

}

What is fork returning? What is wait really doing?

Mommy, where do processes go
when they die?

● What happens to a Process Control Block when
a process completes?
● What happens to its data? What if the data is

needed?

● When a process completes, it goes into a
ZOMBIE state.
● It's PCB isn't reclaimed or cleaned until the parent

can check its status using wait() (or waitpid() or wait
id())

Wait

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

int waitid(idtype_t idtype, id_t id, siginfo_t
*infop, int options);

Exec

int pid;

if ((pid = fork()) == 0) {

/* we’ll soon discuss what might take place before exec

is called */
execl("/home/twd/bin/primes", "primes", "300", 0);

exit(1);

}

/* parent continues here */

while(pid != wait(0))

;

What happens to the process in exec? What is exit() called
with an error?

Exec

● The process is complete overwritten (code,
data, everything) and loaded in its place is the
binary of the program.

● Why is exit an error then?
● Because the line of code should no longer exist if

exec behaves correctly. If exec ever returns, it is
because it failed.

Fork/Exec

● Fork is THE way in Linux to create processes.
● Fork is commonly followed by exec.

● Does that fire any red flags? Why are we copying a
process only to destroy it? Isn't that horribly
inefficient?

Fork/exec have both been optimized to not be
terrible, particularly in the case they are used
together. More on that when we talk about virtual
memory.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

