
  

CSE 451
Section 3

Project 1 (and all its glory)



  

Reflections

● Project 0 is finished and the real fun starts.
● Homework grades should be posted.
● Shared space and SVN repos will be assigned 

today.
● Sorry for the delay

● The speedometer seems to have fallen.
● But, remember, there's also the anonymous 

feedback on the site.



Interrupts

 Interrupt
 Hardware or software
 Hardware interrupts caused by devices signalling CPU
 Software interrupts caused by code 

 Exception
 Unintentional software interrupt
 E.g. errors, divide-by-zero, general protection fault

 Trap
 Intentional software interrupt
 Controlled method of entering kernel mode
 System calls



What happens in an interrupt?

 Execution halted
 CPU switched from user mode to kernel mode
 State saved

 Registers, stack pointer, PC

 With interrupt number index interrupt descriptor table to 
find handler

 Run handler
 Handler is (mostly) just a function pointer

 Restore state
 CPU switched from kernel mode to user mode
 Resume execution



Interrupts

 What happens if there's another interrupt during 
the handler?

 What happens if an interrupt fires when they are 
disabled?



System calls

 An invocation of an OS service
– So the OS can manage and protect services

 Requires architectures support
– But the most basic mechanism is just an 

interrupt



Syscall control flow

  User application calls a library
 User-level library call

  Invoke system call through stub
 _syscallN() sets up arguments for the OS

– _syscallN() might be the out-of-date way...

 Software interrupt with syscall number.
 Syscall handler indexes system call table to find a vector to jump 

to 
 OS performs operation

 Must check arguments! Cannot allow user to trick the OS into 
performing an unsafe operation!

 OS prepares return
 OS returns from interrupt and resume user



How Linux does syscalls

  You can see what happens when the kernel 
invokes a syscall here:

 Arch/x86/kernel/entry_32.S
 If you don't mind reading assembly

  Doesn't really use “interrupts” anymore
 “int 0x80” and “iret” replaced by “sysenter” and “sysexit”
 Similar operations supported by architecture



9

Project 1

 Three main parts: 
 Write a simple shell in C
 Add a simple system call to Linux kernel
 Write a program using your system call

 Due: Fri., Oct 21, 11:59pm
 Electronic turnin: code + writeup



10

CSE451 Shell Hints
 In your shell:

 Use fork to create a child process
 Use execvp to execute a specified 

program
 Use wait to wait until child process 

terminates

 Useful library functions (see man pages):
 Strings: strcmp, strncpy, strtok, atoi
 I/O: fgets, getline, readline
 Error report: perror
 Environment variables: getenv



11

 Adding a System Call

 Add execcounts system call to Linux:
 Purpose: collect statistics
 Count number of times you call fork, vfork, 

clone, and exec system calls.
 Steps:

 Modify kernel to keep track of this 
information

 Add execcounts to return the counts to the 
user

 Use execcounts in your shell to get this 
data from kernel and print it out.



The question everyone asks...

● Your numbers will likely look like a high number 
of clone and exec calls, with very few or none 
to vfork and fork.



Writing a program using your 
system call

● Run a given program and get the 
fork/vfork/clone/exec call counts for it.
● This is analogous to 'time' in that 'time' will run a 

program and report its running time.

● Write this program as one would if they any 
client of a system call (e.g. someone who didn't 
write the system call in the first place).

● Implement a signal handler to interrupt the 
running program and print its counts up to the 
given point.



14

Programming in kernel mode

 Your shell will operate in user mode
 Your system call code will be in the Linux 

kernel, which operates in kernel mode
 Be careful - different programming rules, 

conventions, etc.



15

Programming in kernel mode

 Can’t use application libraries (e.g. libc)
 E.g. can’t use printf

 Use only functions defined by the kernel

– E.g. use printk instead
 Don’t forget you’re in kernel space

 You cannot trust user space
 E.g. unsafe to access a pointer from user 

space directly



16

Kernel development hints

 Best way to learn: read existing code
 Use grep –r search_string *

– -I for case-insensitive
 Use LXR (Linux Cross Reference): 

http://lxr.linux.no/

http://lxr.linux.no/


Requirements and Caveats



Shell Requirements

● It's okay to only support a limited buffer or 
argument length.
● Normally, this is bad. Setting hard limits.
● There are some library calls to alleviate the problem 

(getline, readline, etc.).
● Be careful with these though, they contain static 

state!

● The shell probably not be terribly long. Only 
~100 or so lines.



System Call Requirements

● Implement your system call with the number 341.

● Follow the library interface.

● Don't worry about synchronization issues.
● Imagine you're working on a uniprocessor and the kernel is not 

preemptable.

– ...which is not really the case...

● This is also true when adding the signals in the final part.
● There is a small race condition if the signal fires before the child execs.

● Again, it's unlikely you'll need to write much code.



Caveats

● Linux recently updated with the concept of PID 
namespaces. A virtual PID (vpid) is the PID of 
the currently used namespace and should be 
appropriate for this assignment.



  

Submission Requirements

 Your write-up is a major part of your grade and 
shouldn't be neglected.

 For changed Linux source files:
− Give full path names in your modified files write-up

 USE  “./arch/i386/kernel/process.c”
 NOT “process.c” – there are many of these

− Maintain directories when submitting changed files:
 When I extract your changed files, they should go to 

the right directory, so it is unambiguous which file you 
changed

 This is easy to do with tar



  

Build Options

● Run your shell on forkbomb or your own 
machine.
● Do not forkbomb attu.
● You won't be able to kill a forkbomb individually. 

Use killall.



  



  

Watch out for...

● What architecture the code you're reading is for:

– You'll want x86

– And 32-bit!

● You're working on the latest stable...

– ...but a lot of online resources are for older versions! ...even the previous 
slide...

● Your environment

– VMWare is supported by us. Virtualbox is possible but you'll have to solve 
some problems yourself.

● Everything has an up-to-date way to do it and an obsolete way.
● For the sake of this class, what works will work but its still something to 

look out for.



  

Linux directory structure

● mm → memory management
● ipc → interprocess communication
● fs → files system
● include → user exposed headers
● kernel → core OS
● arch → architecture specific code

– Much of the lower level implementation is here


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

