

Section 4
Processes, kernel threads, user threads, locks

Why use threads?

 Perform multiple tasks at once (reading and
writing, computing and receiving input)

 Take advantage of multiple CPUs
 More efficiently use resources

Why is this “faster”? I/O
CPU

Single thread
Thread 1

Thread 2

Waiting

Running

Running

Thread State

Why is this more efficient?

Quick view

 Process
 Isolated with its own virtual address space
 Contains process data like file handles
 Lots of overhead
 Every process has AT LEAST one kernel thread

 Kernel threads
 Shared virtual address space
 Contains running state data
 Less overhead
 From the OS's point of view, this is what is scheduled to run on a CPU

 User threads
 Shared virtual address space, contains running state data
 Kernel unaware
 Even less overhead

Trade-offs

 Processes
 Secure and isolated
 Kernel aware
 Creating a new process (address space!) brings lots of overhead

 Kernel threads
 No need to create a new address space
 No need to change address space in context switch
 Kernel aware
 Still need to enter kernel to context switch

 User threads
 No new address space, no need to change address space
 No need to enter kernel to switch
 Kernel is unaware. No multiprocessing. I/O blocks all user threads.

Implicit overheads

● Context switching between processes is very
expensive because it changes the address
space.
● But changing the address space is simply a register

change in the CPU?
● But it requires flushing the Translation Look-aside

Buffer.

● Context switching between threads has a
similar overhead. Suddenly the cache will miss
a lot.

When should I use which?

 Process
 When isolation is necessary

− Like in Chrome

 Kernel threads
 Multiprocessor
 heavy CPU per context switch
 Blocking I/O
 Compiling Linux

 User threads
 Single processor or single kernel thread
 Light CPU per context switch
 Little or no blocking I/O

 8

Context switching
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 running Thread 2 ready

Want to switch to thread
2…

Thread 2
registers

Thread 1 regs

 9

Push old context
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1
registers

Thread 1 regs

 10

Save old stack pointer
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 running Thread 2 ready

Thread 2
registers

Thread 1
registers

Thread 1 regs

 11

Change stack pointers
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 2
registers

Thread 1
registers

Thread 1 regs

 12

Pop off new context
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1
registers

Thread 2 regs

 13

Done; return
Xsthread_switch:

pusha

movl %esp,(%eax)

movl %edx,%esp

popa

ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

Thread 1 ready Thread 2 running

Thread 1
registers What got switched?

 SP
 PC (how?)
 Other registers

Thread 2 regs

Adjusting the PC
Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

ESP

CPU

 Thread 2 running:
switch(t2,...);

0x800:printf(“test 2”);

Thread 1
registers

 ret pops off the new
return address!

ra=0x800

 PC

 Thread 1 (stopped):
switch(t1,t2);

 0x400: printf(“test 1”);

ra=0x400

Context Switching

 So was this for kernel threads or user threads?
 Trick question! This can be accomplished in

either kernel or user mode.

Theading Models

Between kernel and user threads, a process might use
one of three models:

 One to one (1:1)

– Only use kernel threads without user level threads on top
of them.

 Many to one (M:1)

– Use only one kernel thread with many user level threads
built on top of them.

 Many to Many (N:M)

– Use many kernel threads with many user level threads.

Threading Models

 Many to many sounds nice, intuitively but...
 ...it can actually get problematic in its

complexity
 See Scheduler Activations

 Linux actually runs One to one
 Windows runs a lazy version of Scheduler

Activations.

Linux and threads/processes

● You must have noticed in your project you deal
with a Linux structure called a “task_struct”. Is
this a PCB or TCB?

task_structs

● Linux has no explicit concept of a “thread” (or a process)
but “tasks”.

● A task is a “context of execution” or COEs.
● COEs can share anything, nothing, or something in-between.

● This allows for more capabilities like:
● An external “cd” program. (shares fs struct and cwd).
● “external IO daemons”. (shares file descriptors)
● vfork (shares address space).

● Linus' argument for this paradigm:
http://www.evanjones.ca/software/threading-linus-msg.html

http://www.evanjones.ca/software/threading-linus-msg.html

Locks

● If you need to protect shared data and critical
sections, you need some primitive to work with.

● But, there are lots of design choices in locking
and synchronization.

Spinning vs Blocking

● Spinning
● If the lock is not free, repeatedly try to acquire the lock.

● Blocking
● If the lock is not free, add the thread to the lock's wait queue and context switch.

● When to use which?
● Spinning is good for small critical sections.

● Also good on multiprocessors.

● If the overhead of the context switch is less than the time spent waiting (spinning),
then blocking is preferable.

– But remember the implicit overhead of context switching as well.

● Spin locks are good for fine-grained work like you might see in your OS.

● Blocking is good for coarse-grained work like protecting large data structures.

Pessimistic Vs Optimistic Locking

● Pessimistic locking checks a lock before updating or
entering a critical section.
● This commonly uses test_and_set.
● This ensures that the current thread is the only one operating.

● Optimistic locking checks that an update will not break
the structure.
● It does this by reading an initial value then checking that this

value hasn't changed with compare_and_swap.
● If the value has changed, abort and try again.
● Therefore, any number of threads might be operating on a

“critical section.”

When to use which?

● “Make the common case fast.”

● Pessimistic locking assumes that the common case is
contention.
● We won't waste time trying to run through critical section if we only

end up aborting.
● An OS has lots of small, commonly used data structures and

critical sections.

● Inversely, optimistic locking assumes that most of the time
there isn't contention.
● Optimistic locking is like database transactions. They assume the

will not commonly abort.
● Also good when data is commonly read but rarely written.
●

Granularity of locks

● One big lock.
● Low overhead.
● Fewer memory references.
● Less concurrency.

● Many little locks.
● Higher overhead.
● More memory references. Greater capacity for bus

contention and cache storms.
● Greater concurrency.

● Avoiding locks entirely...?

Moral of the story...?

● Know thy workload.
● Generally these are statically decided design

choices.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

