
CSE 451: Operating Systems
 Spring 2011

Module 10
Virtual Memory, Page Faults,

Demand Paging, and Page 
Replacement

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 2

Reminder:  Mechanics of address 
translation

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #page frame #

page table

offset

virtual address

virtual page #

Note:  Each address space 
has its own page table!



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 3

Reminder:  Page Table Entries (PTEs)

• PTE’s control mapping
– the valid bit says whether or not the PTE can be used

• says whether or not a virtual address is valid
• it is checked each time a virtual address is used

– the referenced bit says whether the page has been accessed
• it is set when a page has been read or written to

– the modified bit says whether or not the page is dirty
• it is set when a write to the page has occurred

– the protection bits control which operations are allowed
• read, write, execute

– the page frame number determines the physical page
• physical page start address = PFN

page frame numberprotMRV

202111



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 4

Paged virtual memory

• We’ve hinted that all the pages of an address space 
do not need to be resident in memory
– the full (used) address space exists on secondary storage 

(disk) in page-sized blocks

– the OS uses main memory as a (page) cache

– a page that is needed is transferred to a free page frame

– if there are no free page frames, a page must be evicted
• evicted pages go to disk (only need to write if they are dirty)

– all of this is transparent to the application (except for 
performance …)

• managed by hardware and OS

• Traditionally called paged virtual memory



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 5

Page faults

• What happens when a process references a 
virtual address in a page that has been 
evicted?
– when the page was evicted, the OS set the PTE as 

invalid and noted the disk location of the page in a 
data structure (that looks like a page table but holds 
disk addresses)

– when a process tries to access the page, the invalid 
PTE will cause an exception (page fault) to be thrown

– the OS will run the page fault handler in response
• handler uses the “like a page table” data structure to 

locate the page on disk
• handler reads page into a physical frame, updates PTE 

to point to it and to be valid
• OS restarts the faulting process
• there are a million and one details …



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 6

Demand paging

• Pages are only brought into main memory when 
they are referenced
– only the code/data that is needed (demanded!) by a 

process needs to be loaded
• What’s needed changes over time, of course…

– Hence, it’s called demand paging

• Few systems try to anticipate future needs
– OS crystal ball module notoriously ineffective

• But it’s not uncommon to cluster pages
– OS keeps track of pages that should come and go 

together
– bring in all when one is referenced
– interface may allow programmer or compiler to identify 

clusters



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 7

Page replacement

• When you read in a page, where does it go?
– if there are free page frames, grab one

• what data structure might support this?

– if not, must evict something else

– this is called page replacement

• Page replacement algorithms
– try to pick a page that won’t be needed in the near future

– try to pick a page that hasn’t been modified (thus saving the disk 
write)

– OS typically tries to keep a pool of free pages around so that 
allocations don’t inevitably cause evictions

– OS also typically tries to keep some “clean” pages around, so that 
even if you have to evict a page, you won’t have to write it

• accomplished by pre-writing when there’s nothing better to do

– Much more on this later!



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 8

How do you “load” a program?

• Create process descriptor (process control block)

• Create page table

• Put address space image on disk in page-sized 
chunks

• Build page table (pointed to by process descriptor)
– all PTE valid bits ‘false’

– an analogous data structure indicates the disk location of 
the corresponding page

– when process starts executing:
• instructions immediately fault on both code and data pages

• faults taper off, as the necessary code/data pages enter 
memory



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 9

Oh, man, how can any of this possibly 
work?

• Locality!
– temporal locality

• locations referenced recently tend to be referenced again soon

– spatial locality
• locations near recently references locations are likely to be 

referenced soon (think about why)

• Locality means paging can be infrequent
– once you’ve paged something in, it will be used many times

– on average, you use things that are paged in

– but, this depends on many things:
• degree of locality in the application

• page replacement policy and application reference pattern

• amount of physical memory vs. application “footprint” or “working 
set”



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 10

Evicting the best page

• The goal of the page replacement algorithm:
– reduce fault rate by selecting best victim page to 

remove
• “system” fault rate or “program” fault rate??

– the best page to evict is one that will never be 
touched again

• duh …

– “never” is a long time
• Belady’s proof: evicting the page that won’t be used for 

the longest period of time minimizes page fault rate

• Rest of this module:
– survey a bunch of page replacement algorithms
– for now, assume that a process pages against itself, 

using a fixed number of page frames



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 11

#1: Belady’s Algorithm

• Provably optimal:  lowest fault rate (remember SJF?)
– evict the page that won’t be used for the longest time in future

– problem:  impossible to predict the future

• Why is Belady’s algorithm useful?
– as a yardstick to compare other algorithms to optimal

• if Belady’s isn’t much better than yours, yours is pretty good
– how could you do this comparison?

• Is there a best practical algorithm?
– no; depends on workload

• Is there a worst algorithm?
– no, but random replacement does pretty badly

• don’t laugh – there are some other situations where OS’s use near-
random algorithms quite effectively!



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 12

#2: FIFO

• FIFO is obvious, and simple to implement
– when you page in something, put it on the tail of a list

– evict page at the head of the list

• Why might this be good?
– maybe the one brought in longest ago is not being used

• Why might this be bad?
– then again, maybe it is being used

– have absolutely no information either way

• In fact, FIFO’s performance is typically lousy

• In addition, FIFO suffers from Belady’s Anomaly
– there are reference strings for which the fault rate increases when 

the process is given more physical memory



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 13

#3: Least Recently Used (LRU)

• LRU uses reference information to make a more 
informed replacement decision
– idea: past experience is a decent predictor of future behavior
– on replacement, evict the page that hasn’t been used for the 

longest period of time
• LRU looks at the past, Belady’s wants to look at the future
• how is LRU different from FIFO?

– can you think of an example where LRU would be terrible?
• in general, it works exceedingly well

• Implementation
– to be perfect, must grab a timestamp on every memory 

reference, put it in the PTE, order or search based on the 
timestamps …

– way too $$$ in memory bandwidth, algorithm execution time, 
you name it …



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 14

Approximating LRU

• Many approximations, all use the PTE reference bit
– keep a counter for each page

– at some regular interval, for each page, do:
• if ref bit = 0, increment the counter   (hasn’t been used)

• if ref bit = 1, zero the counter            (has been used)

• regardless, zero ref bit

– the counter will contain the # of intervals since the last 
reference to the page

• page with largest counter is least recently used

• Some architectures don’t have PTE reference bits
– can simulate reference bit using the valid bit to induce faults

• hack, hack, hack



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 15

#4: LRU Clock

• AKA Not Recently Used (NRU) or Second Chance
– replace page that is “old enough”

– logically, arrange all physical page frames in a big circle (clock)
• just a circular linked list

– a “clock hand” is used to select a good LRU candidate
• sweep through the pages in circular order like a clock

• if ref bit is off, it hasn’t been used recently, we have a victim
– so, what is minimum “age” if ref bit is off?

• if the ref bit is on, turn it off and go to next page

– arm moves quickly when pages are needed

– low overhead if have plenty of memory

– if memory is large, “accuracy” of information degrades
• add more hands to fix



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 16

Allocation of frames among 
processes

• FIFO and LRU Clock each can be implemented 
as either local or global replacement 
algorithms
– local

• each process is given a limit of pages it can use
• it “pages against itself” (evicts its own pages)

– global
• the “victim” is chosen from among all page frames, 

regardless of owner
• processes’ page frame allocation can vary dynamically

• Issues with local replacement?
• Issues with global replacement?

– Linux uses global replacement



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 17

• Hybrid algorithms
– local replacement
– an explicit mechanism for adding or removing page 

frames

• Issues with all 3 approaches?



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Number of page frames allocated to process

N
um

be
r 

of
 m

em
or

y 
re

fe
re

nc
es

 b
et

w
ee

n 
pa

ge
 f

au
lts

Why?

Why?

Where would you 
like to operate?



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 19

The working set model of program 
behavior

• The working set of a process is used to model the 
dynamic locality of its memory usage
– working set = set of pages process currently “needs”

– formally defined by Peter Denning in the 1960’s

• Definition:
– WS(t,w) = {pages P such that P was referenced in the time 

interval (t, t-w)}
• t: time

• w: working set window (measured in page refs)

• a page is in the working set (WS) only if it was referenced in the 
last w references

– obviously the working set (the particular pages) varies over 
the life of the program

– so does the working set size (the number of pages in the WS)



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 20

Working set size

• The working set size, |WS(t,w)|, changes with 
program locality
– during periods of poor locality, more pages are 

referenced
– within that period of time, the working set size is 

larger

• Intuitively, the working set must be in 
memory, otherwise you’ll experience heavy 
faulting (thrashing)
– when people ask “How much memory does Firefox 

need?”, really they’re asking “what is Firefox's 
average (or worst case) working set size?”



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 21

#5: Hypothetical Working Set 
algorithm

• Estimate |WS(0,w)| for a process
• Allow that process to start only if you can 

allocate it that many page frames
• Use a local replacement algorithm (LRU 

Clock?) make sure that “the right pages” (the 
working set) are occupying the process’s 
frames

• Track each process’s working set size, and re-
allocate page frames among processes 
dynamically

• Problem?  Solution?
• What the heck is w?



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 22

#6: Page Fault Frequency (PFF)

• PFF is a variable-space algorithm that uses a 
more ad hoc approach

• Attempt to equalize the fault rate among all 
processes, and to have a “tolerable” system-
wide fault rate
– monitor the fault rate for each process
– if fault rate is above a given threshold, give it more 

memory
• so that it faults less

– if the fault rate is below threshold, take away 
memory

• should fault more, allowing someone else to fault less



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 23

Thrashing

• Thrashing is when the system spends most of 
its time servicing page faults, little time doing 
useful work
– could be that there is enough memory but a lousy 

replacement algorithm (one incompatible with 
program behavior)

– could be that memory is over-committed
• too many active processes



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 24

Number of active processesS
ys

te
m

 t
hr

ou
gh

pu
t 

(r
eq

ue
st

s/
se

c.
) 

w
ith

 z
er

o 
ov

er
he

ad

Why?

Why?



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 25

Number of active processes

S
ys

te
m

 t
hr

ou
gh

pu
t 

(r
eq

ue
st

s/
se

c.
) 

w
ith

 t
hr

as
hi

ng

Why?



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 26

• Not if system has too much memory
– page replacement algorithm doesn’t much matter 

(over-provisioning)

• Not if system has too little memory
– page replacement algorithm doesn’t much matter 

(over-committed)

• Life is only interesting on the border between 
over-provisioned and over-committed

• Networking analogies
– Aloha Network as an example of thrashing
– over-provisioning as an alternative to Quality of 

Service guarantees

Where is life interesting?



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 27

Summary

• Virtual memory
• Page faults
• Demand paging

– don’t try to anticipate

• Page replacement
– local, global, hybrid

• Locality
– temporal, spatial

• Working set
• Thrashing



05/15/11  © 2011 Gribble, Lazowska, Levy, Zahorjan 28

• Page replacement algorithms
– #1: Belady’s – optimal, but unrealizable
– #2: FIFO – replace page loaded furthest in the past
– #3: LRU – replace page referenced furthest in the 

past
• approximate using PTE reference bit

– #4: LRU Clock – replace page that is “old enough”
– #5: Working Set – keep the working set in memory
– #6: Page Fault Frequency – grow/shrink number of 

frames as a function of fault rate


	CSE 451: Operating Systems  Spring 2006   Module 11 Virtual Memory, Page Faults, Demand Paging, and Page Replacement
	Reminder:  Mechanics of address translation
	Reminder:  Page Table Entries (PTEs)
	Paged virtual memory
	Page faults
	Demand paging
	Page replacement
	How do you “load” a program?
	Oh, man, how can any of this possibly work?
	Evicting the best page
	#1: Belady’s Algorithm
	#2: FIFO
	#3: Least Recently Used (LRU)
	Approximating LRU
	#4: LRU Clock
	Allocation of frames among processes
	Slide 17
	Slide 18
	The working set model of program behavior
	Working set size
	#5: Hypothetical Working Set algorithm
	#6: Page Fault Frequency (PFF)
	Thrashing
	Slide 24
	Slide 25
	Where is life interesting?
	Summary
	Slide 28

