
CSE 451: Operating Systems
 Spring 2011

Module 3: Processes

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 2

Process management

• This module begins a series of topics on processes,
threads, and synchronization
– this is the most important part of the class

– there definitely will be several questions on these topics on
the midterm

• Today: processes and process management
1. What is a “process”?
2. What's the process namespace?
3. How are processes represented inside the OS?
4. The execution states of a process?
5. How are they created?
6. Making creation fast(er)
7. Shells
8. An example of process-process communication: signals

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 3

1. What is a process?

• The process is the OS’s abstraction for execution
– A process is a program in execution

• It's the OS-provided higher level abstraction for the hardware CPU
and main memory resources
– E.g., notions of real time are simplified to sequential execution of successive

instructions

• The simplest (classic) case is the sequential process
– An address space (abstraction of memory)

– A single thread (abstraction of the CPU)

• A sequential process is:
– the unit of execution

– the unit of scheduling

– the dynamic (active) execution context

• compared with program: static, just a bunch of bytes address space

thread

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 4

What’s in a process?

• A process consists of (at least):
– an address space, containing

• the code (instructions) for the running program

• the data for the running program

– thread state, consisting of:
• the program counter (PC), indicating the next instruction

• the stack pointer register (implying the stack it points to)

• Other general purpose register values

– a set of OS resources
• open files, network connections, sound channels, …

– other process metadata
• e.g., signal handlers

• In other words, it’s all the stuff you need to run the
program
– or to re-start it, if it’s interrupted at some point

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 5

Reminder from CSE 378: A process’s
address space (idealized)

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 6

2. The process namespace

• (Like most everything, the particulars depend on the
particular OS)

• The name for a process is called a process ID (PID)
– An integer

• The PID namespace is global to the system
– Only one process at a time has a particular PID

• Operations that create processes return a PID
– e.g., fork(), clone(), exec()

• Operations on processes take PIDs as an argument
– e.g., kill(), wait(), nice()

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 7

• The kernel maintains a data structure to keep track of
process state
– Called the process control block (PCB)

• OS keeps all of a process’s hardware execution state
in the PCB when the process isn’t running

– PC, SP, registers, etc.
– when a process is unscheduled, the state is transferred out of the

hardware into the PCB
– (when a process is running, its state is spread between the PCB and the

CPU)

• Note: It’s natural to think that there must be some
esoteric techniques being used

– fancy data structures that’d you’d never think of yourself

Wrong! It’s pretty much just what you’d think of!

3. Processes in the OS

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 8

The PCB

• The PCB is a data structure with many, many fields:
– process ID (PID)

– parent process ID

– execution state

– program counter, stack pointer, registers

– address space info

– user id (uid)

– group id (gid)

– scheduling priority

– accounting info

– pointers for use in state queues

• In Linux:
– defined in task_struct (include/linux/sched.h)

– over 95 fields!!!

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 9

PCBs and hardware state
• When a process is running, its hardware state is loaded

on a CPU
– PC, SP, registers

– CPU contains current values

• When a process is transitioned to the waiting state, the
OS saves the register values in the PCB
– when the OS returns the process to the running state, it loads the

hardware registers from the values in that process’s PCB

• The act of switching a CPU from one process to another
is called a context switch
– timesharing systems may do 100s or 1000s of switches/sec.

– takes about 5 microseconds on today’s hardware

• Choosing which process to run next is called scheduling

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 10

This is (a
simplification of)

what each of
those PCBs looks

like inside!

Process ID

Pointer to parent

List of children

Process state

Pointer to address space descriptor

Program counter
stack pointer

(all) register values

uid (user id)
gid (group id)

euid (effective user id)

Open file list

Scheduling priority

Accounting info

Pointers for state queues

Exit (“return”) code value

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 11

4. Process execution states

• Each process has an execution state, which indicates
what it is currently doing
– ready: waiting to be assigned to a CPU

• could run, but another process has the CPU

– running: executing on a CPU
• is the process that currently controls the CPU

• pop quiz: how many processes can be running simultaneously?

– waiting (aka “blocked”): waiting for an event, e.g., I/O completion
• cannot make progress until event happens

• As a process executes, it moves from state to state
– UNIX: run ps, STAT column shows current state

– which state is a process in most of the time?

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

States of a process (slightly
simplified)

running

ready

blocked

exception (I/O,
page fault, etc.)

interrupt
(unschedule)

dispatch /
schedule

interrupt
(I/O complete)

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

State queues

• The OS maintains a collection of queues that
represent the state of all processes in the
system
– typically one queue for each state

• e.g., ready, waiting, …

– each PCB is queued onto a state queue according to
the current state of the process it represents

– as a process changes state, its PCB is unlinked from
one queue, and linked onto another

• Once again, this is just as straightforward as it
sounds! The PCBs are moved among queues,
which are represented as linked lists. There is
no magic!

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

State queues

• There may be many wait queues, one for each type of wait
(particular device, timer, message, …)

head ptr
tail ptr

firefox (1365) emacs (948) ls (1470)

cat (1468) firefox (1207)head ptr
tail ptr

Wait queue header

Ready queue header

These are PCBs!

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

PCBs and state queues

• PCBs are data structures
– dynamically allocated inside OS memory

• When a process is created:
– OS allocates a PCB for it

– OS initializes PCB

– OS puts PCB on the correct queue

• As a process computes:
– OS moves its PCB from queue to queue

• When a process is terminated:
– PCB may hang around for a while (exit code…)

• What is the process state?

– eventually, OS deallocates its PCB

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

5. Process creation

• New processes are created by existing
processes
– creator is called the parent
– created process is called the child

• UNIX: do ps, look for PPID field

– what creates the first process, and when?

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Process Creation Semantics

• (Depending on the OS) child processes inherit
certain attributes of the parent

• Examples:
– pid/gid: implies authorization of child
– Open file table: implies stdin/stdout/stderr
– Environment variables
– … other metadata

– On some systems, resource allocation to parent may
be divided among children

• Hierarchical resource allocation limits impact of your
activity on mine

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 19

UNIX process creation details

• UNIX process creation through fork() system call
– creates and initializes a new PCB

– creates a new address space

– initializes new address space with a copy of the entire contents of the
address space of the parent

– initializes kernel resources of new process with resources of parent (e.g.,
open files)

– places new PCB on the ready queue

• the fork() system call “returns twice”
– once into the parent, and once into the child

– returns the child’s PID to the parent

– returns 0 to the child

• fork() = “clone me”

• (We'll see why in a minute...)

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 20

testparent – use of fork()

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 char *name = argv[0];
 int pid = fork();
 if (pid == 0) {
 printf(“Child of %s is %d\n”, name, pid);
 return 0;
 } else {
 printf(“My child is %d\n”, pid);
 return 0;
 }
}

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 21

testparent output

spinlock% gcc -o testparent testparent.c

spinlock% ./testparent

My child is 486

Child of testparent is 0

spinlock% ./testparent

Child of testparent is 0

My child is 571

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 22

fork() … exec()

• Q: So how do we start a new program, instead of just forking
the old program?
– A: first fork, then exec

• int exec(char * prog, char * argv[])
– (actually, there are many flavors of exec)

– stops the current process

– loads program ‘prog’ into the address space
• i.e., overwrites existing process image

– initializes hardware context, args for new program

– places PCB onto ready queue

– note: does not create a new process!

• To run a new program:
– fork()

– Child process does an exec()

– (parent either waits for child to complete, or not)

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 23

6. Making Creation Fast(er)

• The semantics of fork() say the child's address
space is a copy of the parent's

• Implementing fork() that way is slow:
– Have to allocate physical memory for the new

address space
– Have to copy parent's address space contents into

child's address space
– Have to set up child's page tables to map new

address space

• We can speed this up...

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 24

Method 1: vfork()

• vfork() is the older of the two approaches talked about here

• It's (once again) an instance of changing the problem
definition into something we can implement efficiently

• Instead of “child address space is a copy of parent's,” the
semantics are “child address space is the parent's”
– With a “promise” that the child won't modify the address space before

doing an exec()
• This is unenforced. You use vfork() at your own peril.

– When exec() is called, a new address space is created, new page
tables set up for it, and it's loaded with the new executable

– This saves the wasted effort of duplicating the parent's address space
(setting up page tables and copying contents) when the child is just
going to exec() anyway (which is common)

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 25

Method 2: copy-on-write

• This approach retains the original semantics, but copies “only what is
necessary,” rather than the entire address space

• On fork():
– Create a new address space

– Initialize its page tables to the same mappings as the parent's (i.e., they both
point to the same physical memory)

• No copying of address space contents have occurred to this point

– Set both parent and child page tables to make all pages read-only

– If either the parent or child writes to memory, a protection fault occurs

– When the fault occurs:

• Allocate a new physical frame for the child, and point its page table entry at it

• Copy the current contents of the parent address space to that frame

• Mark the entries in both the parent's and child's address space writable for that page

• Restart the process doing the write, re-executing the write instruction

• The result: only pages modified by the parent or child ever end up
being copied

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 26

7. UNIX shells

int main(int argc, char **argv)

{

 while (1) {
 printf(“$ “);

 char *cmd = get_next_command();

 int pid = fork();

 if (pid == 0) {

 exec(cmd);

 panic(“exec failed!”);

 } else {

 wait(pid);

 }

 }

}

$./myprog

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 27

Input/Output Redirection

• $./myprog <input.txt >output.txt # UNIX
– each process has an open file table
– by (universal) convention:

• 0: stdin
• 1: stdout
• 2: stderr

– a child process inherits the parent’s open file table
– Redirection: open files before executing child

process code

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 28

UNIX shells: input/output redirection

int main(int argc, char **argv)

{

 while (1) {
 printf(“$ “);

 char *cmd = get_next_command();

 int pid = fork();

 if (pid == 0) {
 manipulate stdin/stdout/stderr

 exec(cmd);

 panic(“exec failed!”);

 } else {

 wait(pid);

 }

 }

}

$ foo myFile.txt <input.txt >output.txt

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 29

More…

• Note that redirection is completely transparent
to the child process

• What about
– $./myprog >>output.txt
– $./myprog >output.txt 2>&1
– $./myprog | less
– $./myprog &

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 30

8. Process-process communcation
via signals

• Processes can register event handlers
– Feels a lot like event handlers in Java, which...
– Feel sort of like catch blocks in Java programs

• When the event occurs, process asynchronously
jumps to event handler routine

• Used to catch exceptions

• Also used for process-process communcation:
– a process can trigger an event in another one using

signal

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 31

Signals
 Signal Value Action Comment
 --
 SIGHUP 1 Term Hangup detected on controlling terminal
 or death of controlling process
 SIGINT 2 Term Interrupt from keyboard
 SIGQUIT 3 Core Quit from keyboard
 SIGILL 4 Core Illegal Instruction
 SIGABRT 6 Core Abort signal from abort(3)
 SIGFPE 8 Core Floating point exception
 SIGKILL 9 Term Kill signal
 SIGSEGV 11 Core Invalid memory reference
 SIGPIPE 13 Term Broken pipe: write to pipe with no readers
 SIGALRM 14 Term Timer signal from alarm(2)
 SIGTERM 15 Term Termination signal
 SIGUSR1 30,10,16 Term User-defined signal 1
 SIGUSR2 31,12,17 Term User-defined signal 2
 SIGCHLD 20,17,18 Ign Child stopped or terminated
 SIGCONT 19,18,25 Continue if stopped
 SIGSTOP 17,19,23 Stop Stop process
 SIGTSTP 18,20,24 Stop Stop typed at tty
 SIGTTIN 21,21,26 Stop tty input for background process
 SIGTTOU 22,22,27 Stop tty output for background process

4/6/2011 © 2011 Gribble, Lazowska, Levy, Zahorjan 32

Example Use

• You're implementing Apache, a web server

• Apache reads a configuration file when it is launched
– Controls things like what the root directory of the web files is,

what permissions there are on pieces of it, etc.

• Suppose you want to change the configuration while
Apache is running
– If you restart the currently running Apache, you drop some

unknown number of user connections

• Solution: send the running Apache process a signal
– It has registered an signal handler that gracefully re-reads the

configuration file

	CSE 451: Operating Systems Spring 2006 Module 4 Processes
	Process management
	The process
	What’s in a process?
	A process’s address space
	Slide 6
	The process control block
	The PCB revisited
	PCBs and hardware state
	Slide 10
	Process states
	States of a process
	State queues
	Slide 14
	PCBs and state queues
	Process creation
	Slide 17
	Slide 18
	UNIX process creation
	testparent – use of fork()
	testparent output
	exec() vs. fork()
	Slide 23
	Slide 24
	Slide 25
	UNIX shells
	Input/Output Redirection
	Slide 28
	More…
	Slide 30
	Signals
	Slide 32

