
CSE 451: Operating Systems
 Spring 2011

Module 8
Deadlock

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 2

(Is Google the greatest, or what?)

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 3

Definition

• A thread is deadlocked when it’s waiting for an
event that can never occur
– I’m waiting for you to clear the intersection, so I can

proceed
• but you can’t move until he moves, and he can’t move

until she moves, and she can’t move until I move

– thread A is in critical section 1, waiting for access to
critical section 2; thread B is in critical section 2,
waiting for access to critical section 1

– I’m trying to book a vacation package to Tahiti – air
transportation, ground transportation, hotel, side-
trips. It’s all-or-nothing – one high-level transaction –
with the four databases locked in that order. You’re
trying to do the same thing in the opposite order.

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 4

Requirements (to have deadlock)

1. Mutual Exclusion

2. Hold and Wait

3. No Preemption

4. Circular Wait

We'll see that deadlocks can be addressed by attacking
any of these four conditions.

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 5

Resource graphs
• Resource graphs are a way to visualize the (deadlock-related)

state of the threads, and to reason about deadlock

T1 T2 T3

Resources

Threads

• 1 or more identical units of a resource are available
• A thread may hold resources (arrows to threads)
• A thread may request resources (arrows from threads)

T4

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 6

Cycles and deadlock

• Cycles in the graph are related to deadlock
– There is no deadlock unless there is a cycle

• The city intersection example:

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 7

Graph reduction

• A graph can be reduced by a thread if all of
that thread’s requests can be granted
– in this case, the thread eventually will terminate – all

resources are freed – all arcs (allocations) to it in the
graph are deleted

• Miscellaneous theorems (Holt, Havender):
– There are no deadlocked threads iff the graph is

completely reducible
– The order of reductions is irrelevant

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 8

Resource allocation graph with no
cycle

Silberschatz, Galvin and Gagne 2002

What would cause a
deadlock?

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 9

Resource allocation graph with a deadlock

Silberschatz, Galvin and Gagne 2002

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 10

Resource allocation graph with a cycle
but no deadlock

Silberschatz, Galvin and Gagne 2002

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 11

Approaches to Deadlock

• Break one of the four required conditions
– Mutual Exclusion?
– Hold and Wait?
– No Preemption?
– Circular Wait?

• Broadly classified as:
– prevention, or
– avoidance, or
– detection (and recovery)

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

Prevention

• Hold and Wait
• each thread obtains all resources “atomically” at the beginning
• blocks until all are available

• drawback?

• Circular Wait
• resources are numbered
• each thread obtains them in sequence (which could require

acquiring some before they are actually needed)
• why does this work?
• pros and cons?

• Mutual Exclusion
No Preemption
– Application limited

 Applications must conform to behaviors guaranteed
never to deadlock.

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

Avoidance

• Circular Wait
– each thread states its maximum claim for every

resource type
– system runs the Banker’s algorithm at each

allocation request
• Banker ⇒ incredibly conservative
• if I were to allocate you that resource, and then

everyone were to request their maximum claim for
every resource, could I find a way to allocate
remaining resources so that everyone finished?

– More on this in a moment…

Less severe restrictions on program behavior + system support

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

• Every once in a while, check to see if there’s a
deadlock
– how?

• if so, eliminate it
– how?

Detection and Recover

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

Avoidance: Banker’s Algorithm
Example

• Background:
– The set of controlled resources is known to the system
– The number of units of each resource is known to the

system
– Each application must declare its maximum possible

requirement of each resource type

• Then, the system can do the following:
– When a request is made

• pretend you granted it
• pretend all other legal requests were made
• can the graph be reduced?

– if so, allocate the requested resource
– if not, block the thread until some thread releases resources

and try pretending again

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

1. I request a pot

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

Allocation is OK; there is a
way for me to complete, and
then you can complete

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

2. You request a pot

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 19

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

Allocation is OK; there is a
way for me to complete,
and then you can complete

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 20

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

3a. You request a pan

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 21

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

NO! Both of us might be
unable to complete!

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 22

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

3b. I request a pan

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 23

Pots

Pans

Me You

Max:
 1 pot
 2 pans

Max:
 2 pots
 1 pan

Allocation is OK; there is a
way for me to complete,
and then you can complete

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 24

Summary

• Deadlock is bad!

• We can deal with it either statically
(prevention) or dynamically (avoidance and
detection)

• In practice, ordering resources (locks) is the
technique you’ll encounter most often

	CSE 451: Operating Systems Spring 2006 Module 8 Deadlock
	Slide 2
	Definition
	Requirements
	Resource graph
	Slide 6
	Graph reduction
	Resource allocation graph with no cycle
	Resource allocation graph with a deadlock
	Resource allocation graph with a cycle but no deadlock
	Approaches to Deadlock
	Prevention
	Avoidance
	Detection and Recover
	Avoidance: Banker’s Algorithm Example
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Summary

