
CSE 451: Operating Systems
 Spring 2011

Module 9
Memory Management

John Zahorjan
zahorjan@cs.washington.edu

Allen Center 534

Purpose of This Module

• Most/all of this material was covered in CSE
378 or CSE 351

• These slides just provide review, plus perhaps
some specific context you may not have seen
before

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 3

Goals of memory management

• Allocate scarce memory resources among
competing processes, maximizing memory
utilization and system throughput

• Provide a convenient abstraction for
programming (and for compilers, etc.)

• Provide isolation between processes
– we have come to view “addressability” and

“protection” as inextricably linked, even though
they’re really orthogonal

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 4

Tools of memory management

• Base and limit registers
• Swapping
• Paging (and page tables and TLBs)
• Segmentation (and segment tables)
• Page fault handling => Virtual memory
• The policies that govern the use of these

mechanisms

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 5

Today’s desktop and server systems

• The basic abstraction that the OS provides for
memory management is virtual memory (VM)
– Efficient use of hardware (real memory)

• VM enables programs to execute without requiring their
entire address space to be resident in physical memory

• many programs don’t need all of their code or data at once
(or ever)

– no need to allocate memory for it, OS should adjust amount
allocated based on run-time behavior

– Program flexibility
• programs can execute on machines with less RAM than

they “need”
– On the other hand, paging is really, really slow...

– Protection
• virtual memory isolates address spaces from each other

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 6

• Virtual memory requires hardware and OS support
– MMU’s, TLB’s, page tables, page fault handling, …

• Typically accompanied by swapping, and at least
limited segmentation

• Note: hardware is 64-bit, but software is still (mainly)
32-bit
– Limits the size of the virtual address space of any individual

process to 4GB

VM Requires Hardware and OS
Support

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 7

A Brief History of Memory
Management

• Why?
– Because it’s instructive

– Because embedded processors (98% or more of all processors)
typically don’t have virtual memory

– Because some aspects are pertinent to allocating pieces of the
virtual address space

• i.e., e.g., malloc()

• First, there was job-at-a-time batch programming
– programs used physical addresses directly

– OS loads job (perhaps using a relocating loader to “offset” branch
addresses), runs it, unloads it

– what if the program wouldn’t fit into memory?
• manual overlays!

• An embedded system may have only one program!

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 8

• First, there was job-at-a-time batch programming
– programs used physical addresses directly

– OS loads job (perhaps using a relocating loader to “offset” branch
addresses), runs it, unloads it

– what if the program wouldn’t fit into memory?
• manual overlays!

• Swapping
– save a program’s entire state (including its memory image) to disk

– allows another program to be run

– first program can be swapped back in and re-started right where it was

• The first timesharing system, MIT’s “Compatible Time Sharing
System” (CTSS), was a uni-programmed swapping system
– only one memory-resident user

– upon request completion or quantum expiration, a swap took place

– At least it worked...

Uniprogramming

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 9

• Then came multiprogramming
– multiple processes/jobs in memory at once

• to overlap I/O and computation

• Multiprogramming memory management
requirements:
– Protection

• restrict which addresses processes can use, so they can’t stomp
on each other

– fast translation
• memory lookups must be fast, in spite of the protection scheme

– fast context switching
• when switching between jobs, updating memory hardware

(protection and translation) must be quick

Multiprogramming

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 10

Virtual addresses for
multiprogramming

• To make it easier to manage memory of
multiple processes, make processes use virtual
addresses
– virtual addresses are independent of location in

physical memory (RAM) where referenced data lives
• OS determines location in physical memory

– instructions issued by CPU reference virtual
addresses

• e.g., pointers, arguments to load/store instructions, PC
…

– virtual addresses are translated by hardware into
physical addresses (with some setup from OS)

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 11

• The set of virtual addresses a process can
reference is its address space
– many different possible mechanisms for translating

virtual addresses to physical addresses
• we’ll take a historical walk through them, ending up with our

current techniques

• Note: We are not yet talking about paging, or
virtual memory
– only that the program issues addresses in a virtual

address space, and these must be translated to reference
memory (the physical address space)

– for now, think of the program as having a contiguous
virtual address space that starts at 0, and a contiguous
physical address space that starts somewhere else

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 12

Old technique #1: Fixed partitions

• Physical memory is broken up into fixed partitions
– all partitions are equally sized, partitioning never changes

– hardware requirement: base register, limit register
• physical address = virtual address + base register

• base register loaded by OS when it switches to a process

– how do we provide protection?
• if (physical address > base + limit) then… ?

• Advantages
– Simple

• Problems
– internal fragmentation: the fixed size partition is larger than

what was requested

– external fragmentation: two small partitions left, but one
big job – what sizes should the partitions be??

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 13

Mechanics of fixed partitions

partition 0

partition 1

partition 2

partition 3

0

2K

4K

6K

8K

physical memory

offset +
virtual address

P2’s base: 6K

base register

2K

<?

no

raise
 protection fault

limit register

yes

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 14

Old technique #2: Variable partitions

• Obvious next step: physical memory is broken up
into variable-sized partitions
– hardware requirements: base register, limit register
– physical address = virtual address + base register
– how do we provide protection?

• if (physical address > base + limit) then… ?

• Advantages
– no internal fragmentation

• simply allocate partition size to be just big enough for
process (assuming we know what that is!)

• Problems
– external fragmentation

• as we load and unload jobs, holes are left scattered
throughout physical memory

• slightly different than the external fragmentation for fixed
partition systems

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 15

Mechanics of variable partitions

partition 0

partition 1

partition 2

partition 3

partition 4

physical memory

offset +
virtual address

P3’s base

base register

P3’s size

limit register

<?

raise
 protection fault

no

yes

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 16

Dealing with fragmentation

partition 0

partition 1

partition 2

partition 3

partition 4

• Compact memory by
copying

partition 0

partition 1

partition 2

partition 3

partition 4

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 17

Modern technique: Paging

• Solve the external fragmentation problem by using fixed sized units in
both physical and virtual memory

• Solve the internal fragmentation problem by making the units small

frame 0

frame 1

frame 2

frame Y

physical address space

…

page 0

page 1

page 2

page X

virtual address space

…

page 3

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Life Is Easy...

• For developers:
– Processes view memory as a contiguous address space from bytes 0

through N

– N is independent of the actual hardware

• For the memory manager (OS):
– Efficient use of memory, because very little internal fragmentation

– Efficient use of the system because no external fragmentation at all
• No need to copy big chunks of memory around to coalesce free space

• For the protection system (OS):
– One process cannot name another process's memory, so there is

complete isolation

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 19

Address translation

• Translating virtual addresses
– a virtual address has two parts: virtual page number &

offset
– virtual page number (VPN) is index into a page table
– page table entry contains page frame number (PFN)
– physical address is PFN::offset

• Page tables
– managed by the OS
– one page table entry (PTE) per page in virtual address

space
• i.e., one PTE per VPN

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 20

Mechanics of address translation

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #page frame #

page table

offset

virtual address

virtual page #

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 21

PTE's: An Opportunity

• So long as there's a PTE lookup per memory
reference, we might as well add some functionality

– We can add protection
• A virtual page can be read-only, and result in a fault if a store to

it is attempted

• Some pages may not map to anything
– E.g., page 0

– We can add some “accounting information”
• Can't do anything fancy, as address translation has to be fast

• Can keep track of whether or not a virtual page is being used,
though

– (This is intended primarily to help the paging algorithm, once we
get to paging)

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 22

Page Table Entries (PTEs)

•
– the valid bit says whether or not the PTE can be used

• says whether or not a virtual address is valid
• it is checked each time a virtual address is used

– the referenced bit says whether the page has been accessed
• it is set when a page has been read or written to

– the modified bit says whether or not the page is dirty
• it is set when a write to the page has occurred

– the protection bits control which operations are allowed
• read, write, execute

– the page frame number determines the physical page
• physical page start address = PFN

page frame numberprotMRV

202111

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 23

Paging Pros/Cons

• Pros:
– Easy to allocate physical memory
– Leads naturally to virtual memory

• Cons:
– Address translation time

• 2 references per load/store
– Solution: caching

– Page tables can be large:
• 32-bit AS w/ 4KB pages = 220 PTEs = 1,048,576 PTEs
• 64-bit address space: !!!

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 24

Segmentation
(We will be back to paging soon!)

• Paging
– view an address space as a linear array of bytes

• Segmentation
– partition an address space into logical units

• E.g., stack, code, heap, subroutines, …

– a virtual address is <segment #, offset>

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 25

What’s the point?

• More “logical”
– absent segmentation, a linker takes a bunch of

independent modules that call each other and
linearizes them

– they are really independent; segmentation treats
them as such

• Facilitates sharing and reuse
– a segment is a natural unit of sharing – a subroutine

or function

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process
– segmentation = many segments/process

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 26

Hardware support

• Segment table
– multiple base/limit pairs, one per segment
– segments named by segment #, used as index into

table
• a virtual address is <segment #, offset>

– offset of virtual address added to base address of
segment to yield physical address

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 27

Segment lookups

segment 0

segment 1

segment 2

segment 3

segment 4

physical memory

segment #

+

virtual address

<?

raise
 protection fault

no

yes

offset

baselimit

segment table

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 28

Pros and cons

• Yes, it’s “logical” and it facilitates sharing and
reuse

• But it has all the horror of a variable partition
system
– except that linking is simpler, and the “chunks” that

must be allocated are smaller than a “typical” linear
address space

• What to do?

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 29

Combining segmentation and paging

• Can combine these techniques
– x86 architecture supports both segments and paging

• Use segments to manage logical units
– segments vary in size, but are typically large (multiple

pages)

• Use pages to partition segments into fixed-size
chunks
– each segment has its own page table

• there is a page table per segment, rather than per user
address space

– memory allocation becomes easy once again
• no contiguous allocation, no external fragmentation

Segment # Page # Offset within page

Offset within segment

05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 30

• Linux:
– 1 kernel code segment, 1 kernel data segment
– 1 user code segment, 1 user data segment
– all of these segments are paged

• Note: this is a very limited/boring use of
segments!

	CSE 451: Operating Systems Spring 2006 Module 10 Memory Management
	Slide 2
	Goals of memory management
	Tools of memory management
	Today’s desktop and server systems
	Slide 6
	A trip down Memory Lane …
	Slide 8
	Slide 9
	Virtual addresses for multiprogramming
	Slide 11
	Old technique #1: Fixed partitions
	Mechanics of fixed partitions
	Old technique #2: Variable partitions
	Mechanics of variable partitions
	Dealing with fragmentation
	Modern technique: Paging
	User’s perspective
	Address translation
	Mechanics of address translation
	Slide 21
	Page Table Entries (PTEs)
	Paging advantages
	Segmentation (We will be back to paging soon!)
	What’s the point?
	Hardware support
	Segment lookups
	Pros and cons
	Combining segmentation and paging
	Slide 30

