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Purpose of This Module

• Most/all of this material was covered in CSE 
378 or CSE 351

• These slides just provide review, plus perhaps 
some specific context you may not have seen 
before
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Goals of memory management

• Allocate scarce memory resources among 
competing processes, maximizing memory 
utilization and system throughput

• Provide a convenient abstraction for 
programming (and for compilers, etc.)

• Provide isolation between processes
– we have come to view “addressability” and 

“protection” as inextricably linked, even though 
they’re really orthogonal
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Tools of memory management

• Base and limit registers
• Swapping
• Paging (and page tables and TLBs)
• Segmentation (and segment tables)
• Page fault handling => Virtual memory
• The policies that govern the use of these 

mechanisms
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Today’s desktop and server systems

• The basic abstraction that the OS provides for 
memory management is virtual memory (VM)
– Efficient use of hardware (real memory)

• VM enables programs to execute without requiring their 
entire address space to be resident in physical memory

• many programs don’t need all of their code or data at once 
(or ever)

– no need to allocate memory for it, OS should adjust amount 
allocated based on run-time behavior

– Program flexibility
• programs can execute on machines with less RAM than 

they “need”
– On the other hand, paging is really, really slow...

– Protection
• virtual memory isolates address spaces from each other
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• Virtual memory requires hardware and OS support
– MMU’s, TLB’s, page tables, page fault handling, …

• Typically accompanied by swapping, and at least 
limited segmentation

• Note: hardware is 64-bit, but software is still (mainly) 
32-bit
– Limits the size of the virtual address space of any individual 

process to 4GB

VM Requires Hardware and OS 
Support
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A Brief History of Memory 
Management

• Why?
– Because it’s instructive

– Because embedded processors (98% or more of all processors) 
typically don’t have virtual memory

– Because some aspects are pertinent to allocating pieces of the 
virtual address space

• i.e., e.g., malloc()

• First, there was job-at-a-time batch programming
– programs used physical addresses directly

– OS loads job (perhaps using a relocating loader to “offset” branch 
addresses), runs it, unloads it

– what if the program wouldn’t fit into memory?
• manual overlays!

• An embedded system may have only one program!



05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 8

• First, there was job-at-a-time batch programming
– programs used physical addresses directly

– OS loads job (perhaps using a relocating loader to “offset” branch 
addresses), runs it, unloads it

– what if the program wouldn’t fit into memory?
• manual overlays!

• Swapping
– save a program’s entire state (including its memory image) to disk

– allows another program to be run

– first program can be swapped back in and re-started right where it was

• The first timesharing system, MIT’s “Compatible Time Sharing 
System” (CTSS), was a uni-programmed swapping system
– only one memory-resident user

– upon request completion or quantum expiration, a swap took place

– At least it worked...

Uniprogramming
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• Then came multiprogramming
– multiple processes/jobs in memory at once

• to overlap I/O and computation

• Multiprogramming memory management 
requirements:
– Protection

• restrict which addresses processes can use, so they can’t stomp 
on each other

– fast translation
• memory lookups must be fast, in spite of the protection scheme

– fast context switching
• when switching between jobs, updating memory hardware 

(protection and translation) must be quick

Multiprogramming
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Virtual addresses for 
multiprogramming

• To make it easier to manage memory of 
multiple processes, make processes use virtual 
addresses 
– virtual addresses are independent of location in 

physical memory (RAM) where referenced data lives
• OS determines location in physical memory

– instructions issued by CPU reference virtual 
addresses

• e.g., pointers, arguments to load/store instructions, PC 
…

– virtual addresses are translated by hardware into 
physical addresses (with some setup from OS)
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• The set of virtual addresses a process can 
reference is its address space
– many different possible mechanisms for translating 

virtual addresses to physical addresses
• we’ll take a historical walk through them, ending up with our 

current techniques

• Note:  We are not yet talking about paging, or 
virtual memory
– only that the program issues addresses in a virtual 

address space, and these must be translated to reference 
memory (the physical address space)

– for now, think of the program as having a contiguous 
virtual address space that starts at 0, and a contiguous 
physical address space that starts somewhere else
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Old technique #1: Fixed partitions

• Physical memory is broken up into fixed partitions
– all partitions are equally sized, partitioning never changes

– hardware requirement: base register, limit register
• physical address = virtual address + base register

• base register loaded by OS when it switches to a process

– how do we provide protection?
• if (physical address > base + limit) then… ?

• Advantages
– Simple

• Problems
– internal fragmentation: the fixed size partition is larger than 

what was requested

– external fragmentation: two small partitions left, but one 
big job – what sizes should the partitions be??
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Mechanics of fixed partitions

partition 0

partition 1

partition 2

partition 3

0

2K

4K

6K

8K

physical memory

offset +
virtual address

P2’s base: 6K

base register

2K

<?

no

raise
 protection fault

limit register

yes
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Old technique #2: Variable partitions

• Obvious next step: physical memory is broken up 
into variable-sized partitions
– hardware requirements: base register, limit register
– physical address = virtual address + base register
– how do we provide protection?

• if (physical address > base + limit) then… ?

• Advantages
– no internal fragmentation

• simply allocate partition size to be just big enough for 
process (assuming we know what that is!)

• Problems
– external fragmentation

• as we load and unload jobs, holes are left scattered 
throughout physical memory

• slightly different than the external fragmentation for fixed 
partition systems
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Mechanics of variable partitions

partition 0

partition 1

partition 2

partition 3

partition 4

physical memory

offset +
virtual address

P3’s base

base register

P3’s size

limit register

<?

raise
 protection fault

no

yes
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Dealing with fragmentation

partition 0

partition 1

partition 2

partition 3

partition 4

• Compact memory by
copying 

partition 0

partition 1

partition 2

partition 3

partition 4
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Modern technique: Paging

• Solve the external fragmentation problem by using fixed sized units in 
both physical and virtual memory

• Solve the internal fragmentation problem by making the units small

frame 0

frame 1

frame 2

frame Y

physical address space

…

page 0

page 1

page 2

page X

virtual address space

…

page 3



05/15/11 © 2011 Gribble, Lazowska, Levy, Zahorjan 18

Life Is Easy...

• For developers:
– Processes view memory as a contiguous address space from bytes 0 

through N

– N is independent of the actual hardware

• For the memory manager (OS):
– Efficient use of memory, because very little internal fragmentation

– Efficient use of the system because no external fragmentation at all
• No need to copy big chunks of memory around to coalesce free space

• For the protection system (OS):
– One process cannot name another process's memory, so there is 

complete isolation
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Address translation

• Translating virtual addresses
– a virtual address has two parts: virtual page number & 

offset
– virtual page number (VPN) is index into a page table
– page table entry contains page frame number (PFN)
– physical address is PFN::offset

• Page tables
– managed by the OS
– one page table entry (PTE) per page in virtual address 

space
• i.e., one PTE per VPN
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Mechanics of address translation

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset

physical address

page frame #page frame #

page table

offset

virtual address

virtual page #
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PTE's: An Opportunity

• So long as there's a PTE lookup per memory 
reference, we might as well add some functionality

– We can add protection
• A virtual page can be read-only, and result in a fault if a store to 

it is attempted

• Some pages may not map to anything
– E.g., page 0

– We can add some “accounting information”
• Can't do anything fancy, as address translation has to be fast

• Can keep track of whether or not a virtual page is being used, 
though

– (This is intended primarily to help the paging algorithm, once we 
get to paging)
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Page Table Entries (PTEs)

•
– the valid bit says whether or not the PTE can be used

• says whether or not a virtual address is valid
• it is checked each time a virtual address is used

– the referenced bit says whether the page has been accessed
• it is set when a page has been read or written to

– the modified bit says whether or not the page is dirty
• it is set when a write to the page has occurred

– the protection bits control which operations are allowed
• read, write, execute

– the page frame number determines the physical page
• physical page start address = PFN

page frame numberprotMRV

202111
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Paging Pros/Cons

• Pros:
– Easy to allocate physical memory
– Leads naturally to virtual memory

• Cons:
– Address translation time

• 2 references per load/store
– Solution: caching

– Page tables can be large:
• 32-bit AS w/ 4KB pages = 220 PTEs = 1,048,576 PTEs
• 64-bit address space: !!!
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Segmentation
(We will be back to paging soon!)

• Paging
– view an address space as a linear array of bytes

• Segmentation
– partition an address space into logical units

• E.g., stack, code, heap, subroutines, …

– a virtual address is <segment #, offset>
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What’s the point?

• More “logical”
– absent segmentation, a linker takes a bunch of 

independent modules that call each other and 
linearizes them

– they are really independent; segmentation treats 
them as such

• Facilitates sharing and reuse
– a segment is a natural unit of sharing – a subroutine 

or function

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process
– segmentation = many segments/process
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Hardware support

• Segment table
– multiple base/limit pairs, one per segment
– segments named by segment #, used as index into 

table
• a virtual address is <segment #, offset>

– offset of virtual address added to base address of 
segment to yield physical address
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Segment lookups

segment 0

segment 1

segment 2

segment 3

segment 4

physical memory

segment #

+

virtual address

<?

raise
 protection fault

no

yes

offset

baselimit

segment table
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Pros and cons

• Yes, it’s “logical” and it facilitates sharing and 
reuse

• But it has all the horror of a variable partition 
system
– except that linking is simpler, and the “chunks” that 

must be allocated are smaller than a “typical” linear 
address space

• What to do?
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Combining segmentation and paging

• Can combine these techniques
– x86 architecture supports both segments and paging

• Use segments to manage logical units
– segments vary in size, but are typically large (multiple 

pages)

• Use pages to partition segments into fixed-size 
chunks
– each segment has its own page table

• there is a page table per segment, rather than per user 
address space

– memory allocation becomes easy once again
• no contiguous allocation, no external fragmentation

Segment # Page # Offset within page

Offset within segment
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• Linux:
– 1 kernel code segment, 1 kernel data segment
– 1 user code segment, 1 user data segment
– all of these segments are paged

• Note:  this is a very limited/boring use of 
segments!
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