
  

CSE 451
Final Round

Review



Processes

 What is a process?  What does it virtualize?
 differences between program, process, thread?
 what is contained in process?

− what does PCB contain?
 state queues?

− which states, what transitions are possible?
− when do transitions happen?

 Process manipulation
 what does fork() do?  how about exec()?
 how do shells work?



Threads

 What is a thread?
 why are they useful?
 user-level vs. kernel-level threads?

− performance implications
− functionality implications

 How does thread scheduling differ from process 
scheduling?
 what operations do threads support?
 what happens on a thread context switch? what is saved 

in TCB?
 preemptive vs. non-preemptive scheduling?



Scheduling

 Long term vs. short term
 When does scheduling happen?

 job changes state, interrupts, exceptions, job creation
 Scheduling goals?

 maximize CPU utilization
 maximize job throughput
 minimize {turnaround time | waiting time | response time}
 batch vs. interactive: what are their goals?

 What is starvation?  what causes it?
 FCFS/FIFO, SPT, SRPT, priority, RR, …



Synchronization

 Why do we need it?
 data coordination? execution coordination?
 what are race conditions?  when do they occur?
 when are resources shared? (variables, heap objects, …)

 What is mutual exclusion?
 what is a critical section?
 what are the requirements of critical sections?

− mutex, progress, bounded waiting, performance
 what are mechanisms for programming critical sections?

− locks, semaphores, monitors, condition variables



Locks

 What does it mean for acquire/release to be 
atomic?



Semaphores and Monitors

 Semaphores and Condition Variables
 basic operations:  wait vs. signal?
 difference between semaphore and CV?
 when and how do threads block on semaphores? CVs? 

when do they wake?
 bounded buffers problem

− producer/consumer
 readers/writers problem
 how is all of this implemented

− Moving descriptors on and off queues

 Monitors
 the operations and their implementation



Deadlock

 static prevention, dynamic avoidance, 
detection/recovery

 tradeoffs among these
 graph reducibility
 approaches

 Hold and wait
 Resource ordering
 Banker’s algorithm
 Detect and eliminate



Memory Management

 Mechanisms for implementing memory 
management
 physical vs. virtual addressing
 base/limit registers
 partitioning, paging, segmentation

 Internal and external fragmentation



10

Review: virtual memory
 Linux uses both paging and segmentation

 Paging allows independent address spaces for each process.
 Segmentation sets up “kernel memory” and “user memory” segments – 

limited use in linux.
 How does copy-on-write work?  What is it used for?

 Writeable page mapped into multiple address spaces as one copy until first 
write. 

 Useful for fork – why?
 What is The OPT algorithm?

 Optimal page replacement – evict page the won’t be needed longest into the 
future

 What is Belady's anomaly?
 Bad property of FIFO – fault rate can increase with more allocated frames

 LRU has great performance but is inefficient in practice.



11

 Consider a modern desktop computer on 
which the hard disk is spinning. What is the 
most significant delay in reading from a 4K 
byte file that has not been accessed in a long 
time?

Review:



Unix File System

12Source: wikipedia



  

Review: file systems

 Given 4k data blocks, a 8 entry data table with  
6 direct entries, one single-indirection entry, and 
 one double-indirection entry, what is the 
maximum file size?



  

FS cont.

 Explain the benefit of cylinder groups introduced 
in the BSD FFS?
 ...

 What problems were JFS addressing and how?
 ...



15

Last slide
 You have (almost) completed OS.

It was fun, right?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

