

Section 3
Project 0 reflection, More C lessons,

Project 1 pitfalls

Project 0

Reflections?

Coding Style

• Having neat code makes a world of difference
– If I can’t read your code and understand what its doing –

you will lose points! (Especially if there are bugs)

• Properly indent nested blocks
• Always comment functions declared in .h files with

their “contract”
– What does it do?
– What does it return?
– What assumptions does it make about its arguments?
– How does it indicate an error condition?

Coding Style

• Write comments for tricky implementation sections:
– Bad Comment:
somePtr = NULL; // Set somePtr to NULL

What a useless comment!

– Good Comment:
somePtr = NULL; // Always reset the pointer to

 // NULL after the shared memory

 // it points to has been freed

Coding Style

• Always use header guards. Why?

#ifndef FULL_PATH_TO_FILE_H_
 #define FULL_PATH_TO_FILE_H_

 // all your header file code here

 #endif /* FULL_PATH_TO_FILE_H_ */

Coding Style

• Be consistent with your naming.
• For functions

– set_hash_function() style is ok and most common in
C

– SetHashFunction() style also ok, just pick one and
stick to it!

– End typenames in _t, eg
typedef foo_struct * foo_t;

– Don’t abbreviate ambiguous variable names
int n_comp_conns; // BAD – what is this?

 int num_completed_connections; // OK

What’s Wrong Here?

void add(key_t k, value_t v) {

…
ht_node_t node = (ht_node_t)malloc(sizeof(ht_node));
node->k = k;
node->v = v;
…

}

ht_node_t lookup(key_t k) {

 …

 return node;

}

Memory Management

• Always be explicit about who owns memory.
• Consider:

void do_stuff (char * buff, int len) {

…

free(buff);

}

int main() {

char * mybuff = (char*)malloc(SZ * sizeof(char));

do_stuff(mybuff, SZ); // This frees mybuff

…

free(mybuff); // Double free – Undefined behavior!

}

Memory Management

• Consider one of two solutions:
// do stuff assumes ownership of buffer buff and
// deallocates memory allocated for buff.
void do_stuff(char * buff, int len);

• Or
// Caller owns the memory pointed to by buff.

 void do_stuff(char * buff, int len) {

// do not free(buff) here!

 }

• Either way – memory ownership is explicit.

Your hash table?

int main() {

 …

 key_t k = (key_t)malloc(...)

 value_t v = (value_t)malloc(...)

 ht.add(k,v);

 v = NULL;

 ht.remove(k);

 // What's happened to k or v?

}

Two best solutions

• Two solutions:
– Either...

• Client releases ownership of allocated memory

• Hash table must free elements

• If client tries to free added elements, she causes a crash

– ...or
• Client maintains ownership of allocated memory

• Hash table not resposnible from freeing elements

• If client does not maintain pointers, she causes a memory leak

• Which is better?

Memory Management

• When to free memory?

• What if two different places are holding on to a
reference?
– Reference counting. Drawbacks?
– This is why platforms like Java and .NET have

Garbage Collection.

Project 1 Notes

 Project 1
− Due Monday, April 25th At 11:59pm!

 You should have started already! If not, do it now!
 New starting procedure

– And start-up troubles can stall you for days
• (trust me)

Project 1 Notes

 For changed Linux source files:
− Give full path names in your modified files write-up

 USE “./arch/i386/kernel/process.c”
 NOT “process.c” – there are many of these

− Maintain directories when submitting changed files:
 When I extract your changed files, they should go to

the right directory, so it is unambiguous which file you
changed

 This is easy to do with tar

Watch out for...

• What architecture the code you're reading is for:
– You'll want x86

– And 32-bit!

• You're working on the latest stable...
– ...but a lot of online resources are for older

versions! ...even the previous slide...

• Your environment
– VMWare is supported by us. Virtualbox is possible but

you'll have to solve some problems yourself.

Linux directory structure

• mm → memory management

• ipc → interprocess communication

• fs → files system

• include → user exposed headers

• kernel → core OS

• arch → architecture specific code
– Much of the lower level implementation is here

	Slide 1
	Slide 2
	Coding Style
	Slide 4
	Slide 5
	Slide 6
	What’s Wrong Here?
	Memory Management
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Project 1 Notes
	Slide 14
	Slide 15
	Slide 16

