CPU Scheduling and
Queueing Theory

Last Time

* Scheduling policy: what to do next, when
there are multiple threads ready to run

* Uniprocessor policies

— FIFO, round robin, shortest job first

— Multi-level feedback queues as approximation of
shortest CPU task first

Main Points

* Multiprocessor scheduling
— Affinity scheduling
— Space vs. time sharing
* Queueing theory
— Can you predict a system’s response time?

Multiprocessor Scheduling

* What would happen if we used MFQ on a
multiprocessor?

— Contention for scheduler spinlock

Multiprocessor Scheduling

* On modern processors, the CPU is 100x slower
on a cache miss

e Cache effects of a single ready list:

— Cache coherence overhead
 MFQ data structure would ping between caches

* Fetching data from other caches can be even slower
than re-fetching from DRAM

— Cache reuse

 Thread’s data from last time it ran is often still in its old
cache

Amdahl’s Law

* Speedup on a multiprocessor limited by whatever
runs sequentially

* Runtime >=
Sequential portion + parallel portion/# CPUs
 Example:

— Suppose scheduler lock used 0.1% of the time

— Suppose scheduler lock is 50x slower because of cache
effects

— Runtime >= 5% + 95%/# CPUs

e System is only 2.5x faster with 100 processors than 10

Per-Processor Multi-level Feedback:
Affinity Scheduling

CPU 1 CPU 2 CPU 3

<o Ul ©

< L < O

EEE

< L < I

& &

Scheduling Parallel Programs

Oblivious: each processor time-slices its ready
list independently of the other processors

CPU1 CPU2 CPU3

e S
S
g gp“ g

px.y = thread y in process x

pl.4 p1.2

Scheduling Parallel Programs

 What happens if one thread gets time-sliced
while other threads from the same program
are still running?

— Assuming program uses locks and condition
variables, it will still be correct

— What about performance?

Bulk Synchronous Parallel Program

CPU 1 CPU 2 CPU 3 CPU 4

local computation

time
communication

N/

barrier

barrier

local computation

Co-Scheduling

CPU1 CPU2 CPU3

S S 5

p2.1 p2.2 p2.3

px.y = thread y in process x

p1.2 p1.3

Amdahl’s Law, Revisited

Performance
(inverse response time)

perfectly parallel

diminishing returns

.

limited parallelism

A4

Number of Processors

Space Sharing

CPU1 CPU2 CPU3 CPU4 CPU5 CPU6
process 1 process 2
N/

Scheduler activations: kernel informs user-level library as
to # of processors assigned to that application, with upcalls
every time the assignment changes

Queueing Theory

* Can we predict what will happen to user
performance:
— If a service becomes more popular?
— |If we buy more hardware?

— |If we change the implementation to provide more
features?

Arrivals

AN
/

Queueing Model

Queue

Server

Departures
(Throughput)

AN
/

Definitions

Queueing delay: wait time
Service time: time to service the request
Response time = queueing delay + service time

Utilization: fraction of time the server is busy

— Service time * arrival rate

Throughput: rate of task completions

— If no overload, throughput = arrival rate

Queueing

 What is the best case scenario for minimizing
gueueing delay?
— Keeping arrival rate, service time constant

e What is the worst case scenario?

Queueing: Best Case

/N /N

w Full utilization

E a Max throughput

[} e

n (@)

[>

S S

] Service Time =

= Full utilization
N N
/ /

Arrivals During Interval Arrivals During Interval

Response Time

Queueing: Worst Case

N\
Service Time Full utilization

3 Max throughput
Iy
>
(@]
I
|_

\ N

~ /

Arrivals During Interval Arrivals During Interval

Queueing: Average Case?

e Gaussian: Arrivals
are spread out,
around a mean
value

* Exponential:
arrivals are
memoryless

* Heavy-tailed:
arrivals are bursty

Probability of Event

exponential distribution

N

Event =x

Exponential Distribution

0 1 2 3 2

NI Nl NIl NIl N

Permits closed form solution to state probabilities,
as function of arrival rate and service rate

Response Time vs. Utilization

* R=5/(1-U) N
— Better if
gaussian

— Worse if
heavy-tailed

Response Time

 Variance in R
=S/(1-U)"2

Service Time

0 Utilization

What if Multiple Resources?

* Response time =
Sum over all i
Service time for resource i /
(1 — Utilization of resource i)
* Implication

— If you fix one bottleneck, the next highest utilized
resource will limit performance

Overload Management

e What if arrivals occur faster than service can
handle them

— If do nothing, response time will become infinite
* Turn users away?

— Which ones? Average response time is best if turn
away users that have the highest service demand

* Degrade service?

— Compute result with fewer resources
— Example: CNN static front page on 9/11
— Counterexample: highway congestion

