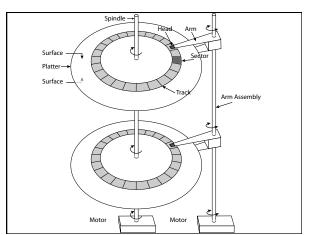
Storage Systems

Main Points

- File systems
 - Useful abstractions on top of physical devices
- Storage hardware characteristics
 - Disks and flash memory
- · File system usage patterns


File System Abstraction

- File system
 - Persistent, named data
 - Hierarchical organization (directories, subdirectories)
 - Access control on data
- File: named collection of data
 - Linear sequence of bytes (or a set of sequences)
 - Read/write or memory mapped
- Crash and storage error tolerance
 - Operating system crashes (and disk errors) leave file system in a valid state
- Performance
 - Achieve close to the hardware limit in the average case

Storage Devices

- · Magnetic disks
 - Storage that rarely becomes corrupted
 - Large capacity at low cost
 - Block level random access
 - Slow performance for random access
 - Better performance for streaming access
- · Flash memory
 - Storage that rarely becomes corrupted
 - Capacity at intermediate cost (50x disk)
 - Block level random access
 - Good performance for reads; worse for random writes

Disk Tracks

- ~ 1 micron wide
 - Wavelength of light is ~ 0.5 micron
 - Resolution of human eye: 50 microns
 - 100K on a typical 2.5" disk
- Separated by unused guard regions
 Reduces likelihood neighboring tracks are corrupted during writes (still a small non-zero chance)
- · Track length varies across disk
 - Outside: More sectors per track, higher bandwidth
 - Disk is organized into regions of tracks with same # of
 - Only outer half of radius is used
 - Most of the disk area in the outer regions of the disk

Sectors

Sectors contain sophisticated error correcting codes

- Disk head magnet has a field wider than track
- Hide corruptions due to neighboring track writes
- · Sector sparing
 - Remap bad sectors transparently to spare sectors on the same surface
- · Slip sparing
 - Remap all sectors (when there is a bad sector) to preserve sequential behavior
- Track skewing
 - Sector numbers offset from one track to the next, to allow for disk head movement for sequential ops

Disk Performance

Disk Latency =

Seek Time + Rotation Time + Transfer Time Seek Time: time to move disk arm over track (1-20ms) Fine-grained position adjustment necessary for head to "settle"

Head switch time $^{\sim}$ track switch time (on modern disks) Rotation Time: time to wait for disk to rotate under disk head

Disk rotation: 4 – 15ms (depending on price of disk)

Transfer Time: time to transfer data onto/off of disk

Disk head transfer rate: 50-100MB/s (5-10 usec/sector)

Host transfer rate dependent on I/O connector (USB, SATA, ...)

Toshiba Disk (2008)

Size	
Platters/Heads	2/4
Capacity	320 GB
Performance	
Spindle speed	7200 RPM
Average seek time read/write	10.5 ms/ 12.0 ms
Maximum seek time	19 ms
Track-to-track seek time	1 ms
Transfer rate (surface to buffer)	54-128 MB/s
Transfer rate (buffer to host)	375 MB/s
Buffer memory	16 MB
Power	
Typical	16.35 W
Idle	11.68 W

Question

 How long to complete 500 random disk reads, in FIFO order?

Question

- How long to complete 500 random disk reads, in FIFO order?
 - Seek: average 10.5 msec
 - Rotation: average 4.15 msec
 - Transfer: 5-10 usec
- 500 * (10.5 + 4.15 + 0.01)/1000 = 7.3 seconds

Question

 How long to complete 500 sequential disk reads?

Question

- How long to complete 500 sequential disk reads?
 - Seek Time: 10.5 ms (to reach first sector)
 - Rotation Time: 4.15 ms (to reach first sector)
 - Transfer Time: (outer track)
 500 sectors * 512 bytes / 128MB/sec = 2ms

Total: 10.5 + 4.15 + 2 = 16.7 ms

Might need an extra head or track switch (+1ms)

Track buffer may allow some sectors to be read off disk out of order (-2ms)

Question

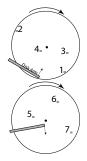
• How large a transfer is needed to achieve 80% of the max disk transfer rate?

Question

 How large a transfer is needed to achieve 80% of the max disk transfer rate?

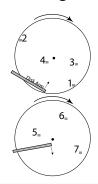
Assume x rotations are needed, then solve for x: 0.8 (10.5 ms + (1 ms + 8.4 ms) x) = 8.4 ms x

Total: x = 9.1 rotations, 9.8MB

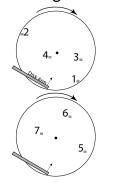

Disk Scheduling

- FIFO
 - Schedule disk operations in order they arrive
 - Downsides?

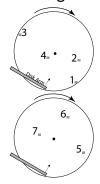
Disk Scheduling


- Shortest seek time first
 - Not optimal!
 - Suppose cluster of requests at far end of disk
 - Downsides?

Disk Scheduling


Disk Scheduling

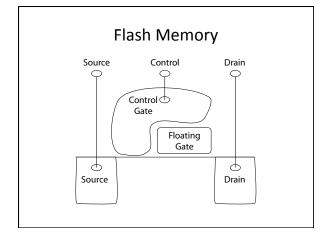
 SCAN: move disk arm in one direction, until all requests satisfied, then reverse direction


Disk Scheduling

 CSCAN: move disk arm in one direction, until all requests satisfied, then start again from farthest request

Disk Scheduling

 R-CSCAN: CSCAN but take into account that short track switch is < rotational delay



Question

• How long to complete 500 random disk reads, in any order?

Question

- How long to complete 500 random disk reads, in any order?
 - Disk seek: 1ms (most will be short)
 - Rotation: 4.15ms
 - Transfer: 5-10usec
- Total: 500 * (1 + 4.15 + 0.01) = 2.2 seconds
 - May be a bit shorter with R-CSCAN

Flash Memory

- Writes require large erasure block first
 - No update in place
 - 128 512 KB
 - Several milliseconds
- Write/read page (2-4KB)
 - 10s of microseconds

Flash Translation Layer

- Flash device firmware maps logical page # to a physical location
 - Allows firmware to move pages as needed
 - Wear-levelling (can only write a physical page a limited number of times)
 - Avoid pages that no longer work
 - Coalesce live pages during erasure
- TRIM command
 - File system tells device when pages are no longer in use

File System Workload

- File sizes
 - Are most files small or large?
 - Which accounts for more total storage: small or large files?
- File access
 - Are most accesses to small or large files?
 - Which accounts for more total I/O bytes: small or large files?