Security and Course Wrapup



Last Time

e Security theory
— Access control matrix
— Passwords
— Encryption

* Security practice

— Example successful attacks



Main Points

* Security practice
— More example attacks
— How to write an undetectable self-replicating virus

* Course wrapup



UNIX talk

* UNIX talk was an early version of Internet chat
— For users logged onto same machine

* App was setuid root
— Needed to write to everyone’s terminal

e Butit had a bug...
— Signal handler for ctl-C



Netscape

* How do you pick a session key?

— Early Netscape browser used time of day as seed to the
random number generator

— Made it easy to predict/break

* How do you download a patch?

— Netscape offered patch to the random seed problem for
download over Web, and from mirror sites

— four byte change to executable to make it use attacker’s
key



Code Red/Nimda/Slammer

Dictionary attack of known vulnerabilities

— known Microsoft web server bugs, email attachments, browser helper
applications, ...

— used infected machines to infect new machines

Code Red:

— designed to cause machines surf to whitehouse.gov simultaneously

Nimda:

— Left open backdoor on infected machines for any use
— Infected ~ 400K machines

Slammer:
— Single UDP packet on MySQL port
— Infected 100K+ vulnerable machines in under 10 minutes

Million node botnets now common



More Examples

Housekeys
ATM keypad
Automobile backplane

Pacemakers



Thompson Virus

 Ken Thompson self-replicating program

— installed itself silently on every UNIX machine,
including new machines with new instruction
sets



Add backdoor to login.c

e Step 1: modify login.c
A:
if (name == “ken”) {
don’t check password;
login ken as root;

}

 Modification is too obvious; how do we hide
it?



Hiding the change to login.c

e Step 2: Modify the C compiler
B:
if see trigger {
insert A into the input stream

}
* Add trigger to login.c
/* gobblygook */
* Now we don’t need to include the code for the
backdoor in login.c, just the trigger

— But still too obvious; how do we hide the modification to
the C compiler?



Hiding the change to the compiler

e Step 3: Modify the compiler

C:
if see trigger2 {
insert B and C into the input stream

}
 Compile the compiler with C present
— now in object code for compiler

* Replace Cin the compiler source with trigger?2



Compiler compiles the compiler

* Every new version of compiler has code for B,C
included

— as long as trigger2 is not removed
— and compiled with an infected compiler

— if compiler is for a completely new machine: cross-
compiled first on old machine using old compiler

* Every new version of login.c has code for A included
— as long as trigger is not removed
— and compiled with an infected compiler



Question

* Can you write a self-replicating C program?
— program that when run, outputs itself
e without reading any input files!

char *buf =
"char *buf = %c%s%c; main(){printf(buf, 34, buf, 34);}";
main() { printf(buf, 34, buf, 34); }



Security Lessons

* Hard to re-secure a machine after penetration

— how do you know you’ve removed all the backdoors?

* Hard to detect if machine has been penetrated
— Western Digital example

* Any system with bugs is vulnerable

— and all systems have bugs: fingerd, ping of death, Code
Red, nimda, ...



Course Wrapup



Major Topics

Protection
— Kernel/user mode, system calls

Concurrency
— Threads, monitors, deadlock, scheduling
Memory management

— Address translation, demand paging

File systems
— Disk, flash, file layout, transactions



OS as Referee

Protection

— OS isolates apps from bugs or attacks in other apps
— Pipes and files for interprocess communication

CPU scheduling

— OS decides which application thread is next onto the
processor

Memory allocation

— OS decides how many memory frames given to each
app

File system

— OS enforces security policy in accessing file data



OS as lllusionist

Physical Reality Abstraction
Limited # of CPUs Can assume near infinite # of
processes/threads
CPU interrupts and time slicing Each thread appears to run

sequentially (at variable speed)

Limited physical memory Near-infinite virtual memory

Apps share physical machine Execution on virtual machine
with isolation between apps

Computers can crash Changes to file system are
atomic and durable



OS as Glue

Locks and condition variables
— Not test&set instructions

Named files and directories
— Not raw disk block storage
Pipes: stream interprocess communication

— Not fixed size read/write calls

Memory-mapped files
— Not raw disk reads/writes



OS Trends and Future Directions

Optimize for the computer’s time
=> optimize for the user’s time

One processor => many

One computer => server clusters

Disk => solid state memory

Operating systems at user level

— Browsers, databases, servers, parallel runtimes



Advertisements

CSE 452: Distributed Systems

— How can we build scalable systems that work even
though parts of the system can fail at any time?

CSE 484: Security

— How can we build systems that can withstand attack?

CSE 444: Databases

— How do we build systems that can manage giant
amounts of data reliably and efficiently?

CSE 461: Networks

— How do we build protocols to allow reliable and
efficient communication between computers?



