10/5/12

Synchronization

Main Points

* Thread implementation
* Race conditions

* Locks and mutual exclusion

Implementing threads

e Thread_fork(func, args)

— Allocate thread control block

— Allocate stack

— Build stack frame for base of stack (stub)

— Put func, args on stack

— Put thread on ready list

— Will run sometime later (maybe right away!)

* stub(func, args): Pintos switch_entry

— Call (*func)(args)
— Call thread_exit()

Thread Stack

What if a thread puts too many procedures on
its stack?

— What should happen?
— What happens in Java?
— What happens in Linux?
— What happens in Pintos?

10/5/12

Implementing (voluntary) thread
context switch

* User-level threads in a single-threaded process
— Save registers on old stack
— Switch to new stack, new thread
— Restore registers from new stack
— Return
* Kernel threads
— Exactly the same!

— Pintos: thread switch always between kernel threads,
not between user process and kernel thread

Pintos: switch_threads (oldT, nextT)
(interrupts disabled!)

Save caller’s register state
NOTE: %eax, etc. are ephemeral

This stack frame must match the
one set up by thread_create()

pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread, stack)
mov thread_stack_ofs, %edx

Save current stack pointer to old
thread's stack, if any.

movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi

popl %esi

popl %ebp

popl %ebx

ret

Thread switch on an interrupt

¢ Thread switch can occur due to timer or I/O
interrupt

— Tells OS some other thread should run
* Simple version (Pintos)
— End of interrupt handler calls switch_threads()

— When resumed, return from handler resumes kernel
thread or user process

* Faster version (textbook)

— Interrupt handler returns to saved state in TCB
— Could be kernel thread or user process

Two threads call yield

Thread 1’s instructions ~ Thread 2’s instructions ~ Processor’s instructions

call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

call thread_yield

return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

return thread_yield

call thre

return thread_yield

call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
call thread_yield

s: e to stack

Si e to TCB

cho nother thread
load other thread state
return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield

c nother thread
load other thread state
return thread_yield

10/5/12

Threads in a Process

* Threads are useful at user-level
— Parallelism, hide 1/0 latency, interactivity
* Option A (early Java): user-level library, within a single-threaded

process

— Library does thread context switch

— Kernel time slices between processes, e.g., on system call I/O
* Option B (Linux, MacOS, Windows): use kernel threads

— System calls for thread fork, join, exit (and lock, unlock,...)

— Kernel does context switching

— Simple, but a lot of transitions between user and kernel mode
* Option C (Windows): scheduler activations

Synchronization Motivation

Thread 1 Thread 2
p = someFn(); while (!isInitialized) ;
isInitialized = true; g =aFn(p);

if g != aFn(someFn())

! panic
— Kernel allocates processors to user-level library
— Thread library implements context switch
— System call 1/0 that blocks triggers upcall
* Option D: Asynchronous I/0
Too Much Milk Example Definitions

12:30
12:35
12:40
12:45
12:50
12:55

1:00

Person A Person B
Look in fridge. Out of milk.
Leave for store.
Arrive at store. Look in fridge. Out of milk.
Buy milk. Leave for store.
Arrive home, put milk away. Arrive at store.
Buy milk.

Arrive home, put milk away.
Oh no!

Race condition: output of a concurrent program depends on the
order of operations between threads
Mutual exclusion: only one thread does a particular thing at a
time
— Critical section: piece of code that only one thread can execute
at once
Lock: prevent someone from doing something

— Lock before entering critical section, before accessing shared
data

— unlock when leaving, after done accessing shared data
— wait if locked (all synch involves waiting!)

10/5/12

Too Much Milk, Try #1

 Correctness property

Too Much Milk, Try #2

Thread A Thread B
— Someone buys if needed (liveness)
— At most one person buys (safety) leave note A leave note B
* Try #1: leave a note if (Inote B) { if (InoteA){
if Inote if (Imilk) if (Imilk)
if Imilk { buy milk buy milk
leave note } }
buy milk remove note A remove note B
remove note
}
Too Much Milk, Try #3 Lessons

Thread A Thread B
leave note A leave note B
while (note B) // X if (InoteA){ //Y
do nothing; if ('milk)
if (!Imilk) buy milk
buy milk; }
remove note A remove note B

Can guarantee at X and Y that either:
(i) Safe for me to buy
(i) Other will buy, ok to quit

* Solution is complicated
— “obvious” code often has bugs

* Modern compilers/architectures reorder
instructions

— Making reasoning even more difficult

* Generalizing to many threads/processors

— Peterson’s algorithm: even more complex

10/5/12

Locks

* lock_acquire
— wait until lock is free, then take it
* lock_release
— release lock, waking up anyone waiting for it
Allows concurrent code to be much simpler:
lock_acquire()
if (!milk) buy milk
lock_release()
* Implementation of locks
— Hardware support for read/modify/write instructions

Lock Example: Malloc/Free
char *malloc (n) { void free(char *p) {
lock_acquire(lock); lock_acquire(lock);
p = allocate memory put p back on free list
lock_release(lock); lock_release(lock);
return p; }

}

Structured Synchronization

* |dentify objects or data structures that can be
accessed by multiple threads concurrently
— In Pintos kernel, everything!
» Add locks to object/module
— Grab lock on start to every method/procedure
— Release lock on finish
— E.g., Java “synchronized”
* What if we need to wait?
— Ex: if no free memory, malloc could wait for free
— Condition variables

