Synchronization

Main Points

* Thread implementation
e Race conditions
 Locks and mutual exclusion

Implementing threads

 Thread fork(func, args)
— Allocate thread control block
— Allocate stack
— Build stack frame for base of stack (stub)
— Put func, args on stack
— Put thread on ready list
— Will run sometime later (maybe right away!)

e stub(func, args): Pintos switch_entry
— Call (*func)(args)
— Call thread_exit()

Thread Stack

 What if a thread puts too many procedures on
its stack?
— What should happen?
— What happens in Java?
— What happens in Linux?

— What happens in Pintos?

Implementing (voluntary) thread
context switch

* User-level threads in a single-threaded process
— Save registers on old stack
— Switch to new stack, new thread
— Restore registers from new stack
— Return

e Kernel threads
— Exactly the same!

— Pintos: thread switch always between kernel threads,
not between user process and kernel thread

Pintos: switch threads (oldT, nextT)
(interrupts disabled!)

Save caller’s register state
NOTE: %eax, etc. are ephemeral

This stack frame must match the
one set up by thread_create()

pushl %ebx
pushl %ebp
pushl %esi
pushl %edi

Get offsetof (struct thread, stack)
mov thread stack_ofs, %edx

Save current stack pointer to old
thread's stack, if any.

movl SWITCH_CUR(%esp), %eax
mov! %esp, (%eax,%edx,1)

Change stack pointer to new
thread's stack

this also changes currentThread
movl SWITCH_NEXT(%esp), %ecx
mov! (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi

popl %esi

popl %ebp

popl %ebx

ret

Thread switch on an interrupt

 Thread switch can occur due to timer or I/O
interrupt

— Tells OS some other thread should run
e Simple version (Pintos)
— End of interrupt handler calls switch_threads()

— When resumed, return from handler resumes kernel
thread or user process

e Faster version (textbook)

— Interrupt handler returns to saved state in TCB
— Could be kernel thread or user process

Two

threads call yield

Thread 1’s instructions
call thread_yield

save state to stack

save state to TCB
choose another thread
load other thread state

return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

return thread_yield

Thread 2’s instructions

call thread yield

save state to stack
save state to TCB
choose another thread
load other thread state

return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

Processor’s instructions
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield

Threads in a Process

Threads are useful at user-level

— Parallelism, hide I/O latency, interactivity
Option A (early Java): user-level library, within a single-threaded
process

— Library does thread context switch

— Kernel time slices between processes, e.g., on system call I/0
Option B (Linux, MacOS, Windows): use kernel threads

— System calls for thread fork, join, exit (and lock, unlock,...)

— Kernel does context switching

— Simple, but a lot of transitions between user and kernel mode
Option C (Windows): scheduler activations

— Kernel allocates processors to user-level library

— Thread library implements context switch

— System call I/O that blocks triggers upcall

Option D: Asynchronous I/0O

Synchronization Motivation

Thread 1 Thread 2
p = someFn(); while (! isInitialized) ;
isInitialized = true; g = aFn(p);

if g != aFn(someFn())
panic

Too Much Milk Example

12:30
12:35
12:40
12:45
12:50
12:55

1:00

Person A

Look in fridge. Out of milk.
Leave for store.

Arrive at store.

Buy milk.

Arrive home, put milk away.

Person B

Look in fridge. Out of milk.
Leave for store.

Arrive at store.

Buy milk.

Arrive home, put milk away.
Oh no!

Definitions

Race condition: output of a concurrent program depends on the
order of operations between threads

Mutual exclusion: only one thread does a particular thing at a
time
— Critical section: piece of code that only one thread can execute
at once

Lock: prevent someone from doing something

— Lock before entering critical section, before accessing shared
data

— unlock when leaving, after done accessing shared data
— wait if locked (all synch involves waiting!)

Too Much Milk, Try

* Correctness property
— Someone buys if needed (liveness)
— At most one person buys (safety)

 Try #1: leave a note
if Inote
if Imilk {
leave note
buy milk
remove note

Too Much Milk, Try

Thread A

leave note A

if (Inote B) {

if (Imilk)
buy milk

}

remove note A

Thread B

leave note B
if (InoteA){
if (Imilk)
buy milk
}

remove note B

Too Much Milk, Try #3

Thread A Thread B
leave note A leave note B
while (note B) // X if (InoteA){ //Y
do nothing; if (!milk)
if (Imilk) buy milk
buy milk; }
remove note A remove note B

Can guarantee at X and Y that either:
(i) Safe for me to buy
(ii) Other will buy, ok to quit

Lessons

e Solution is complicated
— “obvious” code often has bugs

 Modern compilers/architectures reorder
Instructions

— Making reasoning even more difficult

* Generalizing to many threads/processors
— Peterson’s algorithm: even more complex

Locks

* lock acquire
— wait until lock is free, then take it

* lock release
— release lock, waking up anyone waiting for it

Allows concurrent code to be much simpler:
lock_acquire()
if (!milk) buy milk
lock_release()
* Implementation of locks
— Hardware support for read/modify/write instructions

Lock Example: Malloc/Free

char *malloc (n) { void free(char *p) {
lock_acquire(lock); lock_acquire(lock);
p = allocate memory put p back on free list
lock_release(lock); lock_release(lock);
return p; }

}

Structured Synchronization

* |dentify objects or data structures that can be
accessed by multiple threads concurrently

— In Pintos kernel, everything!
* Add locks to object/module
— Grab lock on start to every method/procedure
— Release lock on finish
— E.g., Java “synchronized”

 What if we need to wait?
— Ex: if no free memory, malloc could wait for free

— Condition variables

