Condition Variables



Main Points

e Definition

— Condition wait/signal/broadcast
* Design pattern
 Example: bounded buffer



Last Time

* lock_acquire

— wait until lock is free, then take it

* lock release

— release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)

2. If no one holding, acquire gets

3. If all lock holders finish and no
waiters, waiter eventually gets

oC
NIg

OC

K (progress)
ner priority
K (progress)




Rules for Using Locks

Lock is initially free

Always acquire before accessing shared data
structure

— Beginning of procedure!

Always release after finishing with shared data

— End of procedure!
— DO NOT throw lock for someone else to release

Never access shared data without lock
— Danger!



Will this code work?

if (p == NULL) { newP() {
lock_acquire(lock); p = malloc(sizeof(p));
if (p == NULL) { p->fieldl = ...
p = newP(); p->field2 = ...
) return p;
release lock(lock); }
}

use p->fieldl



Example: Bounded Buffer

tryget(item) { tryput(item) {
lock.acquire(); lock.acquire();
if (front < last) { if ((last — front) < size) {
item = buf[front % size] buf[last % size] = item;
front++; last++;
} }
lock.release(); lock.release();
return item; }
}

Initially: front = last = 0; lock = FREE; size is buffer capacity



Con

dition Variables

Called only when holding a lock

Wait: atomical
processor unti

Signal: wake u

v release lock and relinquish
signalled

0 a waiter, if any

Broadcast: wa

ke up all waiters, if any



Example: Bounded Buffer

get(item) { put(item) {

lock.acquire(); lock.acquire();

while (front == last) while ((last — front) == size)

empty.wait(lock); full.wait(lock);

item = buf[front % size] buf[last % size] = item;
front++; last++;

full.signal(lock); empty.signal(lock);
lock.release(); lock.release();

return item; }

}

Initially: front = last = 0; size is buffer capacity



Condition Variables

* ALWAYS hold lock when calling wait, signal,
broadcast

— Condition variable is sync FOR shared state

— ALWAYS hold lock when accessing shared state
e Condition variable is memoryless

— If signal when no one is waiting, no op

— If wait before signal, waiter wakes up
* Wait atomically releases lock

— What if wait, then release?

— What if release, then wait?



Condition Variables, cont’d

* When a thread is woken up from wait, it may not
run immediately

— Signal/broadcast put thread on ready list
— When lock is released, anyone might acquire it

 Wait MUST be in a loop
while (needToWait())
condition.Wait(lock);

e Simplifies implementation
— Of condition variables and locks
— Of code that uses condition variables and locks



Java Manual

When waiting upon a Condition, a “spurious
wakeup” is permitted to occur, in general, as a
concession to the underlying platform
semantics. This has little practical impact on
most application programs as a Condition
should always be waited upon in a loop,
testing the state predicate that is being waited
for.



Structured Synchronization

|dentify objects or data structures that can be accessed by
multiple threads concurrently

— In Pintos kernel, everything!
Add locks to object/module
— Grab lock on start to every method/procedure
— Release lock on finish
If need to wait
— while(needToWait()) condition.Wait(lock);
— Do not assume when you wake up, signaller just ran
If do something that might wake someone up
— Signal or Broadcast
Always leave shared state variables in a consistent state
— When lock is released, or when waiting



Hansen vs. Hoare semantics

* Hansen
— Signal puts waiter on ready list
— Signaller keeps lock and processor

* Hoare
— Signal gives processor and lock to waiter

— When waiter finishes, processor/lock given back
to signaller

— Nested signals possible!



FIFO Bounded Buffer
(Hoare semantics)

get(item) { put(item) {
lock.acquire(); lock.acquire();

if (front == last) if ((last — front) == size)

empty.wait(lock); full.wait(lock);

item = buf[front % size] buf[last % size] = item;
front++; last++;
full.signal(lock); empty.signal(lock);
lock.release(); lock.release();

return item; }

}

Initially: front = last = 0; size is buffer capacity



FIFO Bounded Buffer
(Mesa semantics)

Create a condition variable for every waiter
Queue condition variables (in FIFO order)
Signal picks the front of the queue to wake up

Care needed if spurious wakeups!

Easily extends to case where queue is LIFO,
priority, priority donation, ...
— With Hoare semantics, not as easy



FIFO Bounded Buffer
(Mesa semantics)

get(item) { item = buf[front % size]
lock.acquire(); front++;
if (front == last) { if (InextPut.empty())
self = new Condition; nextPut.first()->signal(lock);
nextGet.Append(self); lock.release();
while (front == last) return item;
self.wait(lock); }
nextGet.Remove(self);
delete self;
}

Initially: front = last = 0; size is buffer capacity



Synchronization Summary

Use consistent structure
Always use locks and condition variables

Always acquire lock at beginning of procedure,
release at end

Always hold lock when using a condition
variable

Always wait in while loop

Never spin in sleep()



