
1

CSE 451: Operating Systems
 Autumn 2013

Module 8

Semaphores, Condition Variables, and Monitors

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

© 2013 Gribble, Lazowska, Levy, Zahorjan © 2013 Gribble, Lazowska, Levy, Zahorjan 2

Semaphores

•  Semaphore = a synchronization primitive
–  higher level of abstraction than locks
–  invented by Dijkstra in 1968, as part of the THE operating

system

•  A semaphore is:
–  a variable that is manipulated through two operations,

P and V (Dutch for “wait” and “signal”)
•  P(sem) (wait)

–  block until sem > 0, then subtract 1 from sem and proceed
•  V(sem) (signal)

–  add 1 to sem

•  Do these operations atomically

© 2013 Gribble, Lazowska, Levy, Zahorjan 3

Blocking in semaphores

•  Each semaphore has an associated queue of threads
–  when P (sem) is called by a thread,

•  if sem was “available” (>0), decrement sem and let thread
continue

•  if sem was “unavailable” (0), place thread on associated queue;
run some other thread

–  when V (sem) is called by a thread
•  if thread(s) are waiting on the associated queue, unblock one

–  place it on the ready queue
–  might as well let the “V-ing” thread continue execution

•  otherwise (when no threads are waiting on the sem),
increment sem

–  the signal is “remembered” for next time P(sem) is called

© 2013 Gribble, Lazowska, Levy, Zahorjan 4

Two types of semaphores

•  Binary semaphore (aka mutex semaphore)
–  sem is initialized to 1
–  guarantees mutually exclusive access to resource (e.g., a

critical section of code)
–  only one thread/process allowed entry at a time
–  Logically equivalent to a lock with blocking rather than

spinning

•  Counting semaphore
–  Allow up to N threads continue (we’ll see why in a bit …)
–  sem is initialized to N

•  N = number of units available
–  represents resources with many (identical) units available
–  allows threads to enter as long as more units are available

© 2013 Gribble, Lazowska, Levy, Zahorjan 5

Binary semaphore usage

•  From the programmer’s perspective, P and V on a binary
semaphore are just like Acquire and Release on a lock

P(sem)
 . . .
 do whatever stuff requires mutual exclusion; could conceivably
 be a lot of code . . .

V(sem)

–  same lack of programming language support for correct usage

•  Important differences in the underlying implementation, however

© 2013 Gribble, Lazowska, Levy, Zahorjan 6 6

Example: Bounded buffer problem

•  AKA “producer/consumer” problem
–  there is a circular buffer in memory with N entries (slots)
–  producer threads insert entries into it (one at a time)
–  consumer threads remove entries from it (one at a time)

•  Threads are concurrent
–  so, we must use synchronization constructs to control

access to shared variables describing buffer state

head tail

2

© 2013 Gribble, Lazowska, Levy, Zahorjan 7

Bounded buffer using semaphores
(both binary and counting)

Note:
I have elided all the code
concerning which is the first
full slot, which is the last full
slot, etc.

var mutex: semaphore = 1 ; mutual exclusion to shared data
 empty: semaphore = n ; count of empty slots (all empty to start)
 full: semaphore = 0 ; count of full slots (none full to start)

producer:
 P(empty) ; block if no slots available
 P(mutex) ; get access to pointers
 <add item to slot, adjust pointers>
 V(mutex) ; done with pointers
 V(full) ; note one more full slot

consumer:
 P(full) ; wait until there’s a full slot
 P(mutex) ; get access to pointers
 <remove item from slot, adjust pointers>
 V(mutex) ; done with pointers
 V(empty) ; note there’s an empty slot
 <use the item>

© 2013 Gribble, Lazowska, Levy, Zahorjan 8

Example: Readers/Writers

•  Description:
–  A single object is shared among several threads/processes
–  Sometimes a thread just reads the object
–  Sometimes a thread updates (writes) the object

–  We can allow multiple readers at a time

•  why?

–  We can only allow one writer at a time
•  why?

© 2013 Gribble, Lazowska, Levy, Zahorjan 9

Readers/Writers using semaphores
var mutex: semaphore = 1 ; controls access to readcount
 wrt: semaphore = 1 ; control entry for a writer or first reader
 readcount: integer = 0 ; number of active readers

writer:
 P(wrt) ; any writers or readers?
 <perform write operation>
 V(wrt) ; allow others

reader:
 P(mutex) ; ensure exclusion
 readcount++ ; one more reader
 if readcount == 1 then P(wrt) ; if we’re the first, synch with writers
 V(mutex)
 <perform read operation>
 P(mutex) ; ensure exclusion
 readcount-- ; one fewer reader
 if readcount == 0 then V(wrt) ; no more readers, allow a writer
 V(mutex)

© 2013 Gribble, Lazowska, Levy, Zahorjan 10

Readers/Writers notes

•  Notes:
–  the first reader blocks on P(wrt) if there is a writer

•  any other readers will then block on P(mutex)

–  if a waiting writer exists, the last reader to exit signals the
waiting writer

•  can new readers get in while a writer is waiting?
•  so?

–  when writer exits, if there is both a reader and writer waiting,
which one goes next?

© 2013 Gribble, Lazowska, Levy, Zahorjan 11

Semaphores vs. Spinlocks

•  Threads that are blocked at the level of program logic (that is, by
the semaphore P operation) are placed on queues, rather than
busy-waiting

•  Busy-waiting may be used for the “real” mutual exclusion
required to implement P and V
–  but these are very short critical sections – totally independent of

program logic
–  and they are not implemented by the application programmer

© 2013 Gribble, Lazowska, Levy, Zahorjan 12

Abstract implementation

–  P/wait(sem)
•  acquire “real” mutual exclusion

–  if sem is “available” (>0), decrement sem; release “real” mutual
exclusion; let thread continue

–  otherwise, place thread on associated queue; release “real”
mutual exclusion; run some other thread

–  V/signal(sem)
•  acquire “real” mutual exclusion

–  if thread(s) are waiting on the associated queue, unblock one
(place it on the ready queue)

–  if no threads are on the queue, sem is incremented
»  the signal is “remembered” for next time P(sem) is called

•  release “real” mutual exclusion
•  [the “V-ing” thread continues execution, or may be preempted]

3

© 2013 Gribble, Lazowska, Levy, Zahorjan 13

Pressing questions

•  How do you acquire “real” mutual exclusion?

•  Why is this any better than using a spinlock (test-and-set) or
disabling interrupts (assuming you’re in the kernel) in lieu of a
semaphore?

•  What if some bozo issues an extra V?

•  What if some bozo forgets to P before manipulating shared
state?

•  Could locks be implemented in exactly the same way? That is,
“software locks” that you acquire and release, where the
underlying implementation involves moving descriptors to/from a
wait queue?

© 2013 Gribble, Lazowska, Levy, Zahorjan 14

Condition Variables

•  Basic operations
–  Wait()

•  Wait until some thread does a signal and release the
associated lock, as an atomic operation

–  Signal()
•  If any threads are waiting, wake up one
•  Cannot proceed until lock re-acquired

•  Signal() is not remembered
–  A signal to a condition variable that has no threads waiting is

a no-op
•  Qualitative use guideline

–  You wait() when you can’t proceed until some shared state
changes

–  You signal() when shared state changes from “bad” to
“good”

© 2013 Gribble, Lazowska, Levy, Zahorjan 15

Bounded buffers with condition variables

Note 1:
Do you see why wait() must
release the associated
lock?

Note 2:
How is the associated lock
re-acquired?

[Let’s think about the
implementation of this
inside the threads package]

var mutex: lock ; mutual exclusion to shared data
 freeslot: condition ; there’s a free slot
 fullslot: condition ; there’s a full slot

producer:
 lock(mutex) ; get access to pointers
 if [no slots available] wait(freeslot);
 <add item to slot, adjust pointers>
 signal(fullslot);
 unlock(mutex)

consumer:
 lock(mutex) ; get access to pointers
 if [no slots have data] wait(fullslot);
 <remove item from slot, adjust pointers>
 signal(freeslot);
 unlock(mutex);
 <use the item>

© 2013 Gribble, Lazowska, Levy, Zahorjan 16

The possible bug

•  Depending on the implementation …
–  Between the time a thread is woken up by signal() and the

time it re-acquires the lock, the condition it is waiting for may
be false again

•  Waiting for a thread to put something in the buffer
•  A thread does, and signals
•  Now another thread comes along and consumes it
•  Then the “signalled” thread forges ahead …

–  Solution
•  Not

–  if [no slots available] wait(fullslot)
•  Instead

–  While [no slots available] wait(fullslot)

–  Could the scheduler also solve this problem?

© 2013 Gribble, Lazowska, Levy, Zahorjan 17

Problems with semaphores, locks, and
condition variables

•  They can be used to solve any of the traditional synchronization
problems, but it’s easy to make mistakes
–  they are essentially shared global variables

•  can be accessed from anywhere (bad software engineering)
–  there is no connection between the synchronization variable and

the data being controlled by it
–  No control over their use, no guarantee of proper usage

•  Condition variables: will there ever be a signal?
•  Semaphores: will there ever be a V()?
•  Locks: did you lock when necessary? Unlock at the right time? At all?

•  Thus, they are prone to bugs
–  We can reduce the chance of bugs by “stylizing” the use of

synchronization
–  Language help is useful for this

© 2013 Gribble, Lazowska, Levy, Zahorjan 18

One More Approach: Monitors
•  A monitor is a programming language construct that supports

controlled access to shared data
–  synchronization code is added by the compiler

•  why does this help?

•  A monitor is (essentially) a class in which every method automatically
acquires a lock on entry, and releases it on exit – it combines:
–  shared data structures (object)
–  procedures that operate on the shared data (object metnods)
–  synchronization between concurrent threads that invoke those procedures

•  Data can only be accessed from within the monitor, using the provided

procedures
–  protects the data from unstructured access
–  Prevents ambiguity about what the synchronization variable protects

•  Addresses the key usability issues that arise with semaphores

4

© 2013 Gribble, Lazowska, Levy, Zahorjan 19 19

A monitor

shared data

waiting queue of threads
trying to enter the monitor

operations (methods) at most one thread
in monitor at a

time

Proc A

Proc B

Proc C

Don’t confuse
this box with the

box we have
used to denote a

process!

© 2013 Gribble, Lazowska, Levy, Zahorjan 20

Monitor facilities

•  “Automatic” mutual exclusion
–  only one thread can be executing inside at any time

•  thus, synchronization is implicitly associated with the monitor – it
“comes for free”

–  if a second thread tries to execute a monitor procedure, it blocks
until the first has left the monitor

•  more restrictive than semaphores
•  but easier to use (most of the time)

•  But, there’s a problem…

© 2013 Gribble, Lazowska, Levy, Zahorjan 21 21

Problem: Bounded Buffer Scenario

Produce()

Consume()

•  Buffer is empty
•  Now what?

P P C

C

© 2013 Gribble, Lazowska, Levy, Zahorjan 22 22

Problem: Bounded Buffer Scenario

Produce()

Consume()

•  Buffer is full
•  Now what?

P P C

P

© 2013 Gribble, Lazowska, Levy, Zahorjan 23 23

Solution?

•  Monitors require condition variables
•  Operations on condition variables (just as before!)

–  wait(c)
•  release monitor lock, so somebody else can get in
•  wait for somebody else to signal condition
•  thus, condition variables have associated wait queues

–  signal(c)
•  wake up at most one waiting thread

–  “Hoare” monitor: wakeup immediately, signaller steps outside
•  if no waiting threads, signal is lost

–  this is different than semaphores: no history!
–  broadcast(c)

•  wake up all waiting threads

© 2013 Gribble, Lazowska, Levy, Zahorjan 24

Bounded buffer using (Hoare) monitors
Monitor bounded_buffer {
 buffer resources[N];
 condition not_full, not_empty;

produce(resource x) {
 if (array “resources” is full, determined maybe by a count)
 wait(not_full);
 insert “x” in array “resources”
 signal(not_empty);
 }

 consume(resource *x) {
 if (array “resources” is empty, determined maybe by a count)
 wait(not_empty);
 *x = get resource from array “resources”
 signal(not_full);
 }

5

© 2013 Gribble, Lazowska, Levy, Zahorjan 25 25

Produce()

Consume()

•  Buffer is full
•  Now what?

P P C

P

Problem: Bounded Buffer Scenario

© 2013 Gribble, Lazowska, Levy, Zahorjan 26 26

Bounded Buffer Scenario with CV’s

Produce()

Consume()

•  Buffer is full
•  Now what?

P P C

P

Queue of
threads

waiting for
condition “not

full” to be
signaled

© 2013 Gribble, Lazowska, Levy, Zahorjan 27 27

Runtime system calls for (Hoare) monitors

•  EnterMonitor(m) {guarantee mutual exclusion}
•  ExitMonitor(m) {hit the road, letting someone else run}
•  Wait(c) {step out until condition satisfied}
•  Signal(c) {if someone’s waiting, step out and let him run}

•  EnterMonitor and ExitMonitor are inserted automatically by
the compiler.

•  This guarantees mutual exclusion for code inside of the
monitor.

© 2013 Gribble, Lazowska, Levy, Zahorjan 28

Bounded buffer using (Hoare) monitors
Monitor bounded_buffer {
 buffer resources[N];
 condition not_full, not_empty;

 procedure add_entry(resource x) {
 if (array “resources” is full, determined maybe by a count)
 wait(not_full);
 insert “x” in array “resources”
 signal(not_empty);
 }
 procedure get_entry(resource *x) {
 if (array “resources” is empty, determined maybe by a count)
 wait(not_empty);
 *x = get resource from array “resources”
 signal(not_full);
 }

EnterMonitor(m)

EnterMonitor(m)

ExitMonitor(m)

ExitMonitor(m)

© 2013 Gribble, Lazowska, Levy, Zahorjan 29

•  Who runs when the signal() is done and there is a thread waiting
on the condition variable?

•  Hoare monitors: signal(c) means
–  run waiter immediately
–  signaller blocks immediately

•  condition guaranteed to hold when waiter runs
•  but, signaller must restore monitor invariants before signalling!

–  cannot leave a mess for the waiter, who will run immediately!

•  Mesa monitors: signal(c) means
–  waiter is made ready, but the signaller continues

•  waiter runs when signaller leaves monitor (or waits)
–  signaller need not restore invariant until it leaves the monitor
–  being woken up is only a hint that something has changed

•  signalled condition may no longer hold
•  must recheck conditional case

There is a subtle issue with that code…

© 2013 Gribble, Lazowska, Levy, Zahorjan 30

•  Hoare monitors:

•  Mesa monitors:

•  Mesa monitors easier to use
–  more efficient
–  fewer context switches
–  directly supports broadcast

•  Hoare monitors leave less to chance
–  when wake up, condition guaranteed to be what you expect

if (notReady) wait(c)

while (notReady) wait(c)

Hoare vs. Mesa Monitors

6

© 2013 Gribble, Lazowska, Levy, Zahorjan 31

Runtime system calls for Hoare monitors

•  EnterMonitor(m) {guarantee mutual exclusion}
–  if m occupied, insert caller into queue m
–  else mark as occupied, insert caller into ready queue
–  choose somebody to run

•  ExitMonitor(m) {hit the road, letting someone else run}
–  if queue m is empty, then mark m as unoccupied
–  else move a thread from queue m to the ready queue
–  insert caller in ready queue
–  choose someone to run

© 2013 Gribble, Lazowska, Levy, Zahorjan 32

•  Wait(c) {step out until condition satisfied}
–  if queue m is empty, then mark m as unoccupied
–  else move a thread from queue m to the ready queue
–  put the caller on queue c
–  choose someone to run

•  Signal(c) {if someone’s waiting, step out and let him run}
–  if queue c is empty then put the caller on the ready queue
–  else move a thread from queue c to the ready queue, and put the

caller into queue m
–  choose someone to run

© 2013 Gribble, Lazowska, Levy, Zahorjan 33

Runtime system calls for Mesa monitors

•  EnterMonitor(m) {guarantee mutual exclusion}
–  …

•  ExitMonitor(m) {hit the road, letting someone else run}
–  …

•  Wait(c) {step out until condition satisfied}
–  …

•  Signal(c) {if someone’s waiting, give him a shot after I’m
done}
–  if queue c is occupied, move one thread from queue c to queue m
–  return to caller

© 2013 Gribble, Lazowska, Levy, Zahorjan 34

•  Broadcast(c) {food fight!}
–  move all threads on queue c onto queue m
–  return to caller

© 2013 Gribble, Lazowska, Levy, Zahorjan 35 35

Readers and Writers
(stolen from Cornell )

Monitor ReadersNWriters {
 int WaitingWriters, WaitingReaders, NReaders, NWriters;
 Condition CanRead, CanWrite;

 Void BeginWrite()
 {
 if(NWriters == 1 || NReaders > 0)
 {
 ++WaitingWriters;
 wait(CanWrite);
 --WaitingWriters;
 }
 NWriters = 1;
 }
 Void EndWrite()
 {
 NWriters = 0;
 if(WaitingReaders)
 Signal(CanRead);
 else
 Signal(CanWrite);
 }

Void BeginRead()
 {
 if(NWriters == 1 || WaitingWriters > 0)
 {
 ++WaitingReaders;
 Wait(CanRead);

 --WaitingReaders;
 }
 ++NReaders;
 Signal(CanRead);
 }

 Void EndRead()
 {
 if(--NReaders == 0)
 Signal(CanWrite);

 }

© 2013 Gribble, Lazowska, Levy, Zahorjan 36

Monitors and Java

•  Java offers something a bit like monitors
–  It should be clear that they’re not monitors in the full sense!

•  Every Java object contains an intrinsic lock
•  The synchronized keyword locks that lock
•  Can be applied to methods, or blocks of statements

7

© 2013 Gribble, Lazowska, Levy, Zahorjan 37

Synchronized methods

• Atomic integer is a commonly provided (or built) package

• public class atomicInt {
 int value;
 public atomicInt(int initVal) {
 value = initVal;
 }
 public synchronized postIncrement() {
 return value++;
 }
 public synchronized postDecrement() {
 return value--;
 }
 …
 }

© 2013 Gribble, Lazowska, Levy, Zahorjan 38

Monitor Summary

•  Language supports monitors
•  Compiler understands them

–  Compiler inserts calls to runtime routines for
•  monitor entry
•  monitor exit

–  Programmer inserts calls to runtime routines for
•  signal
•  wait

–  Language/object encapsulation ensures correctness
•  Sometimes! With conditions, you still need to think about

synchronization

•  Runtime system implements these routines
–  moves threads on and off queues
–  ensures mutual exclusion!

