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Semaphores 

•  Semaphore = a synchronization primitive 
–  higher level of abstraction than locks 
–  invented by Dijkstra in 1968, as part of the THE operating 

system 

•  A semaphore is: 
–  a variable that is manipulated through two operations,  

P and V (Dutch for “wait” and “signal”) 
•  P(sem) (wait) 

–  block until sem > 0, then subtract 1 from sem and proceed 
•  V(sem) (signal) 

–  add 1 to sem 

•  Do these operations atomically  
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Blocking in semaphores 

•  Each semaphore has an associated queue of threads 
–  when P (sem) is called by a thread, 

•  if sem was “available” (>0), decrement sem and let thread 
continue 

•  if sem was “unavailable” (0), place thread on associated queue; 
run some other thread 

–  when V (sem) is called by a thread 
•  if thread(s) are waiting on the associated queue, unblock one 

–  place it on the ready queue 
–  might as well let the “V-ing” thread continue execution 

•  otherwise (when no threads are waiting on the sem),  
increment sem 

–  the signal is “remembered” for next time P(sem) is called 
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Two types of semaphores 

•  Binary semaphore (aka mutex semaphore) 
–  sem is initialized to 1  
–  guarantees mutually exclusive access to resource (e.g., a 

critical section of code) 
–  only one thread/process allowed entry at a time 
–  Logically equivalent to a lock with blocking rather than 

spinning 

•   Counting semaphore 
–  Allow up to N threads continue (we’ll see why in a bit …) 
–  sem is initialized to N 

•  N = number of units available 
–  represents resources with many (identical) units available 
–  allows threads to enter as long as more units are available 
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Binary semaphore usage 

•  From the programmer’s perspective, P and V on a binary 
semaphore are just like Acquire and Release on a lock 

P(sem) 
 .  .    . 
 do whatever stuff requires mutual exclusion; could conceivably 
 be a lot of code  .  .  . 

V(sem) 
 

–  same lack of programming language support for correct usage 
 

•  Important differences in the underlying implementation, however 

© 2013 Gribble, Lazowska, Levy, Zahorjan 6 6 

Example: Bounded buffer problem 

•  AKA “producer/consumer” problem 
–  there is a circular buffer in memory with N entries (slots) 
–  producer threads insert entries into it (one at a time) 
–  consumer threads remove entries from it (one at a time) 

•  Threads are concurrent 
–  so, we must use synchronization constructs to control 

access to shared variables describing buffer state 

head tail 
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Bounded buffer using semaphores 
(both binary and counting) 

Note:   
I have elided all the code 
concerning which is the first 
full slot, which is the last full 
slot, etc. 

var mutex: semaphore = 1    ; mutual exclusion to shared data 
      empty: semaphore = n    ; count of empty slots (all empty to start) 
      full: semaphore = 0         ; count of full slots (none full to start) 
 

producer: 
       P(empty)  ; block if no slots available 
       P(mutex)  ; get access to pointers 
           <add item to slot, adjust pointers> 
       V(mutex)  ; done with pointers 
       V(full)       ; note one more full slot 

consumer: 
       P(full)       ; wait until there’s a full slot 
       P(mutex)  ; get access to pointers 
           <remove item from slot, adjust pointers> 
       V(mutex)  ; done with pointers 
       V(empty)  ; note there’s an empty slot 
           <use the item> 
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Example: Readers/Writers 

•  Description: 
–  A single object is shared among several threads/processes 
–  Sometimes a thread just reads the object 
–  Sometimes a thread updates (writes) the object 

 
–  We can allow multiple readers at a time 

•  why? 
 

–  We can only allow one writer at a time 
•  why? 
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Readers/Writers using semaphores 
var mutex: semaphore = 1  ; controls access to readcount 
      wrt: semaphore = 1  ; control entry for a writer or first reader 
      readcount: integer = 0  ; number of active readers 

writer: 
 P(wrt)   ; any writers or readers? 
  <perform write operation> 
 V(wrt)   ; allow others 

reader: 
 P(mutex)                          ; ensure exclusion 
     readcount++                         ; one more reader 
     if readcount == 1 then P(wrt)      ; if we’re the first, synch with writers 
 V(mutex) 
  <perform read operation> 
 P(mutex)                          ; ensure exclusion 
    readcount--                         ; one fewer reader 
    if readcount == 0 then V(wrt)       ; no more readers, allow a writer 
 V(mutex) 
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Readers/Writers notes 

•  Notes: 
–  the first reader blocks on P(wrt) if there is a writer 

•  any other readers will then block on P(mutex) 
 

–  if a waiting writer exists, the last reader to exit signals the 
waiting writer 

•  can new readers get in while a writer is waiting? 
•  so? 

–  when writer exits, if there is both a reader and writer waiting, 
which one goes next? 

© 2013 Gribble, Lazowska, Levy, Zahorjan 11 

Semaphores vs. Spinlocks 

•  Threads that are blocked at the level of program logic (that is, by 
the semaphore P operation) are placed on queues, rather than 
busy-waiting 
 

•  Busy-waiting may be used for the “real” mutual exclusion 
required to implement P and V 
–  but these are very short critical sections – totally independent of 

program logic 
–  and they are not implemented by the application programmer 
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Abstract implementation 

–  P/wait(sem) 
•  acquire “real” mutual exclusion 

–  if sem is “available” (>0), decrement sem; release “real” mutual 
exclusion; let thread continue 

–  otherwise, place thread on associated queue; release “real” 
mutual exclusion; run some other thread 

–  V/signal(sem) 
•  acquire “real” mutual exclusion 

–  if thread(s) are waiting on the associated queue, unblock one 
(place it on the ready queue) 

–  if no threads are on the queue, sem is incremented 
»  the signal is “remembered” for next time P(sem) is called 

•  release “real” mutual exclusion 
•  [the “V-ing” thread continues execution, or may be preempted] 
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Pressing questions 

•  How do you acquire “real” mutual exclusion? 
 

•  Why is this any better than using a spinlock (test-and-set) or 
disabling interrupts (assuming you’re in the kernel) in lieu of a 
semaphore? 
 

•  What if some bozo issues an extra V? 
 

•  What if some bozo forgets to P before manipulating shared 
state? 

•  Could locks be implemented in exactly the same way?  That is, 
“software locks” that you acquire and release, where the 
underlying implementation involves moving descriptors to/from a 
wait queue? 
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Condition Variables 

•  Basic operations 
–  Wait() 

•  Wait until some thread does a signal and release the 
associated lock, as an atomic operation 

–  Signal() 
•  If any threads are waiting, wake up one 
•  Cannot proceed until lock re-acquired 

•  Signal() is not remembered 
–  A signal to a condition variable that has no threads waiting is 

a no-op 
•  Qualitative use guideline 

–  You wait() when you can’t proceed until some shared state 
changes 

–  You signal() when shared state changes from “bad” to 
“good” 
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Bounded buffers with condition variables 

Note 1:   
Do you see why wait() must 
release the associated 
lock? 

Note 2:  
How is the associated lock 
re-acquired? 

[Let’s think about the 
implementation of this 
inside the threads package] 

var mutex: lock     ; mutual exclusion to shared data 
      freeslot: condition     ; there’s a free slot 
      fullslot: condition     ; there’s a full slot 

producer: 
       lock(mutex)  ; get access to pointers 
       if [no slots available] wait(freeslot); 
           <add item to slot, adjust pointers> 
       signal(fullslot); 
       unlock(mutex) 

consumer: 
       lock(mutex)  ; get access to pointers 
       if [no slots have data] wait(fullslot); 
           <remove item from slot, adjust pointers> 
       signal(freeslot); 
       unlock(mutex);  
       <use the item> 
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The possible bug 

•  Depending on the implementation … 
–  Between the time a thread is woken up by signal() and the 

time it re-acquires the lock, the condition it is waiting for may 
be false again 

•  Waiting for a thread to put something in the buffer 
•  A thread does, and signals 
•  Now another thread comes along and consumes it 
•  Then the “signalled” thread forges ahead … 

–  Solution 
•  Not 

–  if [no slots available] wait(fullslot) 
•  Instead  

–  While [no slots available] wait(fullslot) 

–  Could the scheduler also solve this problem? 

© 2013 Gribble, Lazowska, Levy, Zahorjan 17 

Problems with semaphores, locks, and 
condition variables 

•  They can be used to solve any of the traditional synchronization 
problems, but it’s easy to make mistakes 
–  they are essentially shared global variables 

•  can be accessed from anywhere (bad software engineering) 
–  there is no connection between the synchronization variable and 

the data being controlled by it 
–  No control over their use, no guarantee of proper usage 

•  Condition variables:  will there ever be a signal? 
•  Semaphores:  will there ever be a V()? 
•  Locks:  did you lock when necessary?  Unlock at the right time?  At all? 

•  Thus, they are prone to bugs 
–  We can reduce the chance of bugs by “stylizing” the use of 

synchronization 
–  Language help is useful for this 
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One More Approach: Monitors 
•  A monitor is a programming language construct that supports 

controlled access to shared data 
–  synchronization code is added by the compiler 

•  why does this help? 
 

•  A monitor is (essentially) a class in which every method automatically 
acquires a lock on entry, and releases it on exit – it combines: 
–  shared data structures (object) 
–  procedures that operate on the shared data (object metnods) 
–  synchronization between concurrent threads that invoke those procedures 

 
•  Data can only be accessed from within the monitor, using the provided 

procedures 
–  protects the data from unstructured access 
–  Prevents ambiguity about what the synchronization variable protects 

•  Addresses the key usability issues that arise with semaphores 
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A monitor 

shared data 

waiting queue of threads 
trying to enter the monitor 

operations (methods) at most one thread 
in monitor at a 

time 

Proc A 

Proc B 

Proc C 

Don’t confuse 
this box with the 

box we have 
used to denote a 

process! 
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Monitor facilities 

•  “Automatic” mutual exclusion 
–  only one thread can be executing inside at any time 

•  thus, synchronization is implicitly associated with the monitor – it 
“comes for free”  

–  if a second thread tries to execute a monitor procedure, it blocks 
until the first has left the monitor 

•  more restrictive than semaphores 
•  but easier to use (most of the time) 

 

•  But, there’s a problem… 
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Problem: Bounded Buffer Scenario 

Produce() 

Consume() 

•  Buffer is empty 
•  Now what? 

P P C 

C 
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Problem: Bounded Buffer Scenario 

Produce() 

Consume() 

•  Buffer is full 
•  Now what? 

P P C 

P 
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Solution? 

•  Monitors require condition variables 
•  Operations on condition variables (just as before!) 

–  wait(c) 
•  release monitor lock, so somebody else can get in 
•  wait for somebody else to signal condition 
•  thus, condition variables have associated wait queues 

–  signal(c) 
•  wake up at most one waiting thread 

–  “Hoare” monitor:  wakeup immediately, signaller steps outside 
•  if no waiting threads, signal is lost 

–  this is different than semaphores: no history! 
–  broadcast(c) 

•  wake up all waiting threads 
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Bounded buffer using (Hoare) monitors 
Monitor bounded_buffer { 
  buffer resources[N]; 
  condition not_full, not_empty; 
 
produce(resource x) { 
    if (array “resources” is full, determined maybe by a count) 
          wait(not_full); 
    insert “x” in array “resources” 
    signal(not_empty); 
  } 

 
 consume(resource *x) { 
    if (array “resources” is empty, determined maybe by a count) 
           wait(not_empty); 
    *x = get resource from array “resources” 
    signal(not_full); 
  } 
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Produce() 

Consume() 

•  Buffer is full 
•  Now what? 

P P C 

P 

Problem: Bounded Buffer Scenario 
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Bounded Buffer Scenario with CV’s 

Produce() 

Consume() 

•  Buffer is full 
•  Now what? 

P P C 

P 

Queue of 
threads 

waiting for 
condition “not 

full” to be 
signaled 
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Runtime system calls for (Hoare) monitors 

•  EnterMonitor(m) {guarantee mutual exclusion} 
•  ExitMonitor(m) {hit the road, letting someone else run} 
•  Wait(c) {step out until condition satisfied} 
•  Signal(c) {if someone’s waiting, step out and let him run} 

•  EnterMonitor and ExitMonitor are inserted automatically by 
the compiler.   

•  This guarantees mutual exclusion for code inside of the 
monitor. 
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Bounded buffer using (Hoare) monitors 
Monitor bounded_buffer { 
  buffer resources[N]; 
  condition not_full, not_empty; 
 
  procedure add_entry(resource x) { 
    if (array “resources” is full, determined maybe by a count) 
      wait(not_full); 
    insert “x” in array “resources” 
    signal(not_empty); 
  } 
  procedure get_entry(resource *x) { 
    if (array “resources” is empty, determined maybe by a count) 
      wait(not_empty); 
    *x = get resource from array “resources” 
    signal(not_full); 
  } 

EnterMonitor(m) 

EnterMonitor(m) 

ExitMonitor(m) 

ExitMonitor(m) 
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•  Who runs when the signal() is done and there is a thread waiting 
on the condition variable? 
 

•  Hoare monitors:  signal(c) means 
–  run waiter immediately 
–  signaller blocks immediately 

•  condition guaranteed to hold when waiter runs 
•  but, signaller must restore monitor invariants before signalling! 

–  cannot leave a mess for the waiter, who will run immediately! 
 

•  Mesa monitors:  signal(c) means 
–  waiter is made ready, but the signaller continues 

•  waiter runs when signaller leaves monitor (or waits) 
–  signaller need not restore invariant until it leaves the monitor 
–  being woken up is only a hint that something has changed 

•  signalled condition may no longer hold 
•  must recheck conditional case 

There is a subtle issue with that code… 
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•  Hoare monitors: 
 

•  Mesa monitors: 
 

•  Mesa monitors easier to use 
–  more efficient 
–  fewer context switches 
–  directly supports broadcast 

•  Hoare monitors leave less to chance 
–  when wake up, condition guaranteed to be what you expect 

if (notReady) wait(c) 

while (notReady) wait(c) 

Hoare vs. Mesa Monitors 



6 

© 2013 Gribble, Lazowska, Levy, Zahorjan 31 

Runtime system calls for Hoare monitors 

•  EnterMonitor(m) {guarantee mutual exclusion} 
–  if m occupied, insert caller into queue m 
–  else mark as occupied, insert caller into ready queue 
–  choose somebody to run 

•  ExitMonitor(m) {hit the road, letting someone else run} 
–  if queue m is empty, then mark m as unoccupied 
–  else move a thread from queue m to the ready queue 
–  insert caller in ready queue 
–  choose someone to run 
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•  Wait(c) {step out until condition satisfied} 
–  if queue m is empty, then mark m as unoccupied 
–  else move a thread from queue m to the ready queue 
–  put the caller on queue c 
–  choose someone to run 

•  Signal(c) {if someone’s waiting, step out and let him run} 
–  if queue c is empty then put the caller on the ready queue 
–  else move a thread from queue c to the ready queue, and put the 

caller into queue m 
–  choose someone to run 
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Runtime system calls for Mesa monitors 

•  EnterMonitor(m) {guarantee mutual exclusion} 
–  … 

•  ExitMonitor(m) {hit the road, letting someone else run} 
–  … 

•  Wait(c) {step out until condition satisfied} 
–  … 

•  Signal(c) {if someone’s waiting, give him a shot after I’m 
done} 
–  if queue c is occupied, move one thread from queue c to queue m 
–  return to caller 
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•  Broadcast(c) {food fight!} 
–  move all threads on queue c onto queue m 
–  return to caller 
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Readers and Writers 
(stolen from Cornell ) 

Monitor ReadersNWriters { 
  int WaitingWriters, WaitingReaders, NReaders, NWriters; 
  Condition CanRead, CanWrite; 
 
 Void BeginWrite() 
  { 
        if(NWriters == 1 || NReaders > 0) 
        { 
              ++WaitingWriters; 
             wait(CanWrite); 
             --WaitingWriters; 
        } 
        NWriters = 1; 
  } 
  Void EndWrite() 
  { 
         NWriters = 0; 
         if(WaitingReaders) 
              Signal(CanRead); 
         else 
              Signal(CanWrite); 
  } 

  
Void BeginRead() 
  { 
       if(NWriters == 1 || WaitingWriters > 0) 
       { 
             ++WaitingReaders; 
             Wait(CanRead); 

 --WaitingReaders; 
       } 
       ++NReaders; 
       Signal(CanRead); 
  } 
 
  Void EndRead() 
  { 
        if(--NReaders == 0) 
                Signal(CanWrite); 
 
  } 
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Monitors and Java 

•  Java offers something a bit like monitors 
–  It should be clear that they’re not monitors in the full sense! 

•  Every Java object contains an intrinsic lock 
•  The synchronized keyword locks that lock 
•  Can be applied to methods, or blocks of statements 
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Synchronized methods 

• Atomic integer is a commonly provided (or built) package

• public class atomicInt {
    int value;
    public atomicInt(int initVal) {
        value = initVal;
    }
    public synchronized postIncrement() {
        return value++;
    }
    public synchronized postDecrement() {
        return value--;
    }
    …
  }
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Monitor Summary 

•  Language supports monitors 
•  Compiler understands them 

–  Compiler inserts calls to runtime routines for 
•  monitor entry 
•  monitor exit 

–  Programmer inserts calls to runtime routines for 
•  signal 
•  wait 

–  Language/object encapsulation ensures correctness 
•  Sometimes!  With conditions, you still need to think about 

synchronization 

•  Runtime system implements these routines 
–  moves threads on and off queues 
–  ensures mutual exclusion! 


