CSE 451: Operating Systems
Spring 2021

Module 7.5

Midterm Review

John Zahorjan

Mechanics

* Midterm is Wednesday, 5/5
* No class, no JZ office hour on 5/5

It will be a Canvas quiz

You’ll have 50 minutes to complete it once you start
It will be available between 1:00 am PDT and 9:00 pm PDT

If you have questions while taking it, please email cse451-staff@cs
* Do not post to the discussion board

| will try to answer questions promptly between 9:00 am and 5:00 pm PDT
* Probably not at all before 9:00 am, possibly promptly nearing 8:00-9:00 pm

| will be doing nothing else except waiting for questions between 11:00 am
PDT and 1:00 pm PDT

* Some questions and answers may be posted by us to the discussion board

Material Covered

* Class material through today
* Slide sets 1 (Introduction) through 7 (Synchronization (cont.))

e Labs 1 and 2
* Have you been doing them?

Format / Resources

* Mix of multiple choice and short answer

* You can use any resource available to you except other people

* Don’t convey anything related to the midterm to anyone during the period
the exam is available, including stackoverflow and the like

* The goal is to have many, relatively simple problems
* Simple enough that you can use what you know to answer them all within 50

minutes
* Enough of them that looking up answers during the exam won’t have a good

result

Slide Set 1: Introduction

e What are the roles of the OS?

* What does it mean to share the resources of the computer?
* Who are they shared among?
* When does the OS itself get a chance to run?

* What is “required” to share the resources?

* Why is isolation important? Could you build an OS that didn’t provide it?
Would such a system be useful? Would there be any advantage to such a
system?

* What mechanisms does the OS provide/use to isolate

* Memory
* CPU
* Disk

Thematic Issues: Policy vs. Mechanism and
Deferring Policy

* What mechanisms does the hardware provide?
* What policies does it enforce?

» Deferring policy to higher levels is the essence of computing hardware
* Does the hardware do anything without software?

* Which mechanisms are oriented to/vital to implementing the OS?

* What are example abstractions built by the OS upon these
mechanisms?
* Oneis “the OS” itself...

* The OS as an enabler

» Simplify implementation of applications vs. efficiency of applications
e Code time vs. run time efficiency
* Portability as a code time consideration

Themes

* What does it mean for the OS to be efficient?

* (Logical) operations can happen at very different timescales on
computers. What approaches can be applied to deal with very slow
ones (long latency)?

* Policy/mechanism distinction and the idea of deferring policy
* Interposition as a way to evolve
* Naming

* Synchronization
e Concurrency vs. parallelism

Slide Set 2: Architectural Support

* What is the basic control flow of the system?
* Why do transitions from user code to the OS take place?

* Since they run on the same CPU, why can’t applications do everything the
OS can do?

* What happens on a transition from user code into the 0S?
* On a transition from the OS to user code?

* What mechanisms does the hardware provide to help the OS keep control of
the system?

When the OS is running, what stack is it using (in xk)?

How does xk use the segmented memory system provided by x86 647

 How is memory protected?

How are IO devices protected?

What is an argument against protection?

Slide Set 3: OS Components and Structure

* Why is “components and structure” a topic?
* Why isn’t there a clear answer?

* How does OS structure help or hinder portability of the OS?
* How does OS structure help or hinder debugging of the OS?
* How does OS structure help or hinder extensibility of the OS?

* How does OS structure help or hinder run time performance of the
OS?

* What are some example OS structures?

Slide Set 3: OS Components and Structure

* Processes / threads
* Why have a process abstraction?
* Distinction between a process and a thread?
* Running / runnable / blocked states

* Memory management
* Virtual address spaces (cse 351)

* |/O devices
* How is innovation (extensibility) supported?
* |/O device vs. file system

* Shells / Windowing / Networking

* Virtual machines

Slide Set 4: Processes

* Why have an abstraction like “process”?

 Memory layout of address space
* What's special about a stack?

* Process control blocks and runtime state of process
* Running / runnable / blocked (single threaded process...) / zombie
* Process metadata
» Contents of address space plus CPU state (registers)

* Context switching
* The basis for sharing
* What is the mechanism?

* How is it different than procedure call?
* How is it the same?

Process Creation

* fork()/exec(path-to-executable, args) vs. createprocess(path-to-
executable, ..., args)

* Relationship of fork to
S ./myprogram >output.txt

* Relationship of fork to
S cat myfile.txt | grep Due | wc

* vfork() and copy-on-write fork

 Communicating “arguments” to subprocesses
* Inherited meta-data
* Meta-data modified by parent code running in new process
* Explicit args
* Inherited Environment

Process
Communication/Synchronization/Abstraction

* wait()
* signals (kill())
e Other: generic
* Files
* Pipes
* Named pipes
e Other: workarounds

* setuid executables
* Compare/contrast with trap mechanism for entering kernel

* Process abstraction
e Session abstraction
* Process group abstraction

Slide Set 5: Threads

* Thread vs. process
* Why do we want threads?
 (Concurrency vs. parallelism)

* Why does each thread have its own stack?
* (What's special about stack memory?)
* |s stack memory thread private?

* The key idea to a thread is a control flow

* Has a stack
* Can be paused and resumed simply by saving and restoring its CPU context

Kernel threads vs. User Level threads

 Saving and restoring registers is NOT privileged
* Allocating cores to threads IS privileged

* Can create a thread (control flow) abstraction at user level, including
context switching among threads

* The kernel allocates a core to a kernel thread

* When the OS is entered on that core, it can determine what kernel thread it
was running and save registers in structure for that kernel thread

* Each kernel thread created by a user-level thread package is an
opportunity for the application to be allocated a core
» Kernel can’t allocate more cores to app than it has kernel threads

* |t can allocate fewer...

Scheduler Activations

* An application may create many user-level threads (using a user-level thread
package that knows how to create/save state/ restore state/terminate them)

* |f application code executes a blocking system call (e.g., read)
* The OS is entered, because it’s a system call

* The OS saves registers in a structure associated with the kernel thread that the OS
last allocated that core to

* The app has just lost a core, so it needs a chance to decide if the set of threads it
is running on the cores it still has is the best choice

* Conversely, if the OS allocates an additional core and restores the state of a
kernel thread running in that app, the app gains a core
* The user-level thread package should get a chance to decide what thread should
run on that core

» Scheduler activations are a way for the OS to send “an upcall” to the user-
level thread package when the number of cores allocated to it changes

Slide Set 6: Synchronization

* A correct concurrent program must be correct for every possible
physical execution

* What are the possible physical executions?
* Constrained by ordering semantics within a single control flow
* Constrained by synchronization operations between control flows

* Critical sections

* Correct execution if executed in a non-overlapping way
* Possible incorrectly if distinct executions overlap or interleave
 Effect is “atomic”

* Read-modify-write of a shared variable
* Need mutual exclusion
* Alock is a synchronization variable that provides mutual exclusion

Locks

 acquire()/release() (or lock()/unlock())
* Semantics vs. implementation

* Implementations
e Spinlocks
* Mutexes (blocking locks)

» Use spinlocks when the expected spin time is reliably short
* Use blocking locks otherwise

» Use spinlocks to implement blocking locks
* A spin lock is used to guard access to the structure that represents the mutex

* The lock state and a queue of waiting threads
e The guarding spinlock is held until either the lock state is changed to locked
or the thread has enqueued itself on the wait list

Implementing spinlocks

* Acquire(): Need to read current lock state and set it to locked if it’s
unlocked

* That’s a read-modify-write, so it’s a critical section

* Can’t resolve it using spinlocks because we’re trying to implement
spinlocks

* Need lower level (hardware) support
* Test-and-set: fetches contents of a memory location into a register
and writes 1 there

* Exchange: swaps a register and contents of a memory location

* Disabling interrupts?!

Slide Set 7: Synchronization (cont.)

* Blocking as a basic thread operation

* Note that user-level threads must block by using code in the user-level
thread library, and kernel threads must block using code in the kernel

* Because that’s the level at which the data structures tracking the states of the threads
live

* That means synchronization variable implementations must exist in kernel
code and in user-level code

* Yield’ing vs. sleep’ing vs. wait’ing (block’ing)

* Yield is “l can run, but | think my progress right now probably isn’t very
important so run some other thread if there any ready”

 Sleep is an abomination
* You block yourself; someone else wakes you up

Condition variables

* A blocking synchronization variable where the decision about when
to block is deferred to the application

* The application needs to (a) evaluate the blocking condition, and
then (b) block if necessary.

* For the result of (a) to mean anything at the time (b) is performed requires
mutual exclusion (i.e., a lock)

* The lock cannot be held while the thread is blocked, but...
* The lock cannot be released before the thread is blocked

e Condition variables solve this
e Atomically release the lock and block the thread
* Wait(cv, lock) and signal(cv) (and broadcast(cv))

Memory Consistency

* Memory consistency is how writes to memory by one core are seen by
others

* Programmers would like all cores to see writes in the order they occurred on
the core that wrote them

* Hardware would like the flexibility to push values to memory in a way that is
most efficient

* Programmers must reason statically; hardware would like to optimize dynamically

* Compromise:
* Hardware provides a “memory barrier” operation that flushes all writes to
memory before it finishes
* Infrastructure software implementer includes memory barriers in the
implementation of operations on synchronization variables
* Programmer respects that correct code must use synchronization variables to
achieve synchronization

* With that restriction, the code sees updates as to shared values as though they were
performed atomically

Guidelines for Multithreaded Programs

* Always use synchronization when accessing shared values
* Use locks and condition variables for synchronization

* Use the procedure as the unit of mutual exclusion
* Acquire lock at beginning, release at end

* Always wait() in a while loop

* If your code contains a call to sleep(), most likely you’re doing it
wrong

Midterm Wednesday

e Don’t stress!

* The final course grade will reflect what we think you have mastered
by the end of the course, so...

* If you do really well on the midterm, great!

* If your midterm result isn’t what you were hoping for, hey, the course
has a long way to go

* It is much harder to catch up than to keep up

