
CSE 451 Section 1.2
XK Lab 1 Discussion
21sp - 8 Apr 2021

Today’s Agenda

● Same lab 1 slides from last week
○ If anyone needs a refresher, happy to go through them again

● Some discussion questions
● Open Lab 1 Q/A

Where to start?

Start by reading:

● lab/overview.md - A description of the xk codebase. A MUST-READ!
● lab/memory.md - An overview of memory management in xk
● lab/lab1.md - Assignment write-up
● lab/lab1design.md - A sample design doc for the lab 1

○ You will be in charge of writing design docs for the future labs. Check out
lab/designdoc.md for details.

File Information

Need a way to store the following information about a file:
● A reference to the inode of the file
● Current offset
● Access permissions (readable or writable)

○ for when we add pipes and file writability later

● In memory reference count
File Info Struct

Kernel View

There will be a global array of all the open files on the system (bounded by
NFILE) placed in static memory.

File Info
Struct
Index 0

File Info
Struct
Index 1

File Info
Struct
Index 2

File Info
Struct
Index

NFILE - 2

File Info
Struct
Index

NFILE - 1

= In use = Available

Process View

File
Info

Struct
Index 0

File
Info

Struct
Index 1

File
Info

Struct
Index 2

G
lo

ba
l

Ar
ra

y

File
Info

Struct
Index 3

File
Info

Struct
Index 4

File
Info

Struct
Index 5

File
Info

Struct
Index 6

Process 1’s File Descriptor Array

0 1 2 3 NOFILE-1

st
ru

ct
 p

ro
c

Process 2’s File Descriptor Array

0 1 2 3 NOFILE - 1
st

ru
ct

 p
ro

c

File System Functions

filewrite and fileread

● Writing or reading of a "file"
○ Note that file is in quotes. Many things on Unix-like systems are treated as a file. A “file”

can be a real file on disk, or a console, or a pipe (lab 2)!
● Check out the functions readi and writei defined in kernel/fs.c

fileopen

Finds an open file in the global file table to give to the process

File
Info

Struct
Index 0

File
Info

Struct
Index 1

G
lo

ba
l

Ar
ra

y

0 1 2 3

st
ru

ct
 p

ro
c

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

fileclose

Release the file from this process, will have to clean up if this is the last reference

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

G
lo

ba
l

Ar
ra

y

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

filedup

Duplicates the file descriptor in the process’ file descriptor table
Why do we need this?

File
Info

Struct
Index 0

File
Info

Struct
Index 1

G
lo

ba
l

Ar
ra

y

0 1 2 3

st
ru

ct
 p

ro
c

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

filestat

● Return statistics to the user about a file
● Check out the function stati in kernel/fs.c

Lab 1 Test Program Code Fragment

● What’s going on here?

● We mention the file system
is read only…

○ Why can we write to stdout?

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

open(“console”, O_RDWR)
G

lo
ba

l
Ar

ra
y

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

open(“console”, O_RDWR)
inode

“console”
T_DEV

G
lo

ba
l

Ar
ra

y

● Resolve inode for
“console”

● Find next unused slot in
global array, allocate for
inode

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

open(“console”, O_RDWR)
inode

“console”
T_DEV

G
lo

ba
l

Ar
ra

y
● Find next open slot in

local FD array

● Return FD to user

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

inode
“console”
T_DEV

G
lo

ba
l

Ar
ra

y

open(“console”, O_RDWR)
dup(0)

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

open(“console”, O_RDWR)
dup(0)

inode
“console”
T_DEV

G
lo

ba
l

Ar
ra

y
● Find next open slot in

local FD array

● Duplicate reference from
user’s given FD

● Return new FD to user

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

inode
“console”
T_DEV

G
lo

ba
l

Ar
ra

y

open(“console”, O_RDWR)
dup(0)
dup(0)

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

File Table View

stdin stdout stderr

open(“console”, O_RDWR)
dup(0)
dup(0)

inode
“console”
T_DEV

G
lo

ba
l

Ar
ra

y

Console Input/Output

● The console device is just a special file called “console”!
● Code to handle device files is already handled for you

○ Its information is already provided for you when you open the device file.
○ Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.

● I thought stdin/stdout/stderr were always available?
○ Recall that fork() copies the file descriptor table and there’s always a root process. The

root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.

Multiple Open Calls on Same File

● Draw out the process and global open file table layout after the following:

int fd1 = open(“file.txt”, O_RDONLY);
int fd2 = open(“file.txt”, O_RDWR); // assume we allow writes to files

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

Multiple Open Calls on Same File

G
lo

ba
l

Ar
ra

y

open(“file.txt”, O_RDONLY)

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
inode

“file.txt”
T_FILE

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
inode

“file.txt”
T_FILE

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDWR)

inode
“file.txt”
T_FILE

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDWR)

inode
“file.txt”
T_FILE

● Each open call allocates
a new file_info struct

● Name lookup returns
same inode

File
Info

Struct
Index 0

File
Info

Struct
Index 1

0 1 2 3

st
ru

ct
 p

ro
c

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDWR)

inode
“file.txt”
T_FILE

● Each open call allocates
a new file_info struct

● Name lookup returns
same inode

System calls

System Calls

● sys_open, sys_read, sys_write, sys_close, sys_dup, sys_fstat
● Main goals of sys functions

○ Argument parsing and validation (never trust the user!)
○ Call associated file functions

Argument Parsing & Validation

All functions have int n, which will get the n'th argument. Returns 0 on success,
-1 on failure
● int argint(int n, int *ip): Gets an int argument
● int argint64_t(int n, int64_t *ip): Gets a int64_t argument
● int argptr(int n, char **pp, int size): Gets an array of size. Needs size to

check array is within the bounds of the user's address space
● int argstr(int n, char **pp): Tries to read a null terminated string.

You should implement and then use:
● int argfd(int n, int *fd): Will get the file descriptor, making sure it's a valid

file descriptor (in the open file table for the process).

Console Input/Output

● The console device is just a special file called “console”!
● Code to handle device files is already handled for you

○ Its information is already provided for you when you open the device file.
○ Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.

● I thought stdin/stdout/stderr were always available?
○ Recall that fork() copies the file descriptor table and there’s always a root process. The

root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.

Where is X?

From the top level of the repo, run:

grep -nR “X” .
For better results, ctags is a useful tool on attu (man ctags) with support built
into vim and emacs. There are shortcuts in vim/emacs for jumping to where a
function/type/macro/variable is defined when using ctags.

-n gives the line numbers

https://andrew.stwrt.ca/posts/vim-ctags/
https://www.emacswiki.org/emacs/EmacsTags%23tags

Staging of work

1. The global file table
2. User/Process file table
3. File functions
4. System calls

Questions?

