CSE 451 Section 1.2
XK Lab 1 Discussion
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Today's Agenda

e Same lab 1 slides from last week
o If anyone needs a refresher, happy to go through them again

e Some discussion questions
e Openlab1Q/A



Where to start?

Start by reading:

lab/overview.md - A description of the xk codebase. A MUST-READ!
lab/memory.md - An overview of memory management in xk
lab/lab1.md - Assignment write-up

lab/lab1design.md - A sample design doc for the lab 1

o You will be in charge of writing design docs for the future labs. Check out
lab/designdoc.md for details.



File Information

Need a way to store the following information about a file:
e Areference to the inode of the file
e Current offset
e Access permissions (readable or writable)
o for when we add pipes and file writability later File Info Struct
e In memory reference count
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File System Functions



filewrite and fileread

e Writing or reading of a "file"
o Note that file is in quotes. Many things on Unix-like systems are treated as a file. A “file”
can be a real file on disk, or a console, or a pipe (lab 2)!

e Check out the functions readi and writei defined in kernel/fs.c



fileopen

Finds an open file in the global file table to give to the process
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fileclose

Release the file from this process, will have to clean up if this is the last reference
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filedup

Duplicates the file descriptor in the process’ file descriptor table
Why do we need this?

File File File File
Info Info Info Info
Struct Struct Struct Struct

Index O Index 1 Index O Index 1

struct proc
struct proc



filestat

e Return statistics to the user about a file
e Check out the function stati in kernel/fs.c



Lab 1 Test Program Code Fragment

e What's going on here?

int main() { .
S (open( e e We mention the file system

return -7; is read only...

} o  Why can we write to stdout?

dup(©);
dup(©);

printf(




File Table View
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File Table View
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File Table View

open(“console”, O_RDWR)
e Find next open slot in
local FD array

File File
Info Info e Return FD to user
Struct Struct

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

0 1 2 3

stdin stdout stderr




File Table View

open(“console”, O_RDWR)
dup(0)
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File Table View
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File Table View

open(“console”, O_RDWR)
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File Table View
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dup(0)

dup(0 : .
4P (0) File File

Info Info

Struct Struct

Index O Index 1

Global
Array

(o

o
o
re]
()
=
£
fres]
()

stdin stdout stderr



Console Input/Output

"I

e The console device is just a special file called “console

e Code to handle device files is already handled for you

o Itsinformation is already provided for you when you open the device file.
o Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.

e | thought stdin/stdout/stderr were always available?
o Recall that fork() copies the file descriptor table and there’s always a root process. The
root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.



Multiple Open Calls on Same File

e Draw out the process and global open file table layout after the following:

int fd1 = open(“file.txt”, O_RDONLY);
int fd2 = open(“file.txt”, O_RDWR); // assume we allow writes to files



Multiple Open Calls on Same File
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Multiple Open Calls on Same File
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Multiple Open Calls on Same File
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Multiple Open Calls on Same File
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Multiple Open Calls on Same File
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System calls



System Calls

e sys_open, sys_read, sys_write, sys_close, sys_dup, sys_fstat

e Main goals of sys functions

o  Argument parsing and validation (never trust the user!)
o Call associated file functions



Argument Parsing & Validation

All functions have int n, which will get the n'th argument. Returns 0 on success,
-1 on failure
e int argint(int n, int *ip): Gets an int argument
e int argint64_t(int n, int64_t *ip): Gets a int64_t argument
e int argptr(int n, char **pp, int size): Gets an array of size. Needs size to
check array is within the bounds of the user's address space
e int argstr(int n, char **pp): Tries to read a null terminated string.
You should implement and then use:
e int argfd(int n, int *fd): Will get the file descriptor, making sure it's a valid
file descriptor (in the open file table for the process).



Console Input/Output

"I

e The console device is just a special file called “console

e Code to handle device files is already handled for you
o Itsinformation is already provided for you when you open the device file.
o Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.
e | thought stdin/stdout/stderr were always available?

o Recall that fork() copies the file descriptor table and there’s always a root process. The
root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.



Where is X?

From the top level of the repo, run:

i ”»
g re p = n R X ° -n gives the line numbers

For better results, ctags is a useful tool on attu (man ctags) with support built
into vim and emacs. There are shortcuts in vim/emacs for jumping to where a
function/type/macro/variable is defined when using ctags.


https://andrew.stwrt.ca/posts/vim-ctags/
https://www.emacswiki.org/emacs/EmacsTags%23tags

Staging of work

1.
2.
3.
4.

The global file table
User/Process file table
File functions

System calls



Questions?



