CSE 451 Section 1.2
XK Lab 1 Discussion

21sp -8 Apr 2021

Today's Agenda

e Same lab 1 slides from last week
o If anyone needs a refresher, happy to go through them again

e Some discussion questions
e Openlab1Q/A

Where to start?

Start by reading:

lab/overview.md - A description of the xk codebase. A MUST-READ!
lab/memory.md - An overview of memory management in xk
lab/lab1.md - Assignment write-up

lab/lab1design.md - A sample design doc for the lab 1

o You will be in charge of writing design docs for the future labs. Check out
lab/designdoc.md for details.

File Information

Need a way to store the following information about a file:
e Areference to the inode of the file
e Current offset
e Access permissions (readable or writable)
o for when we add pipes and file writability later File Info Struct
e In memory reference count

Kernel View

File Info File Info
Struct Struct

Index Index
NFILE - 2 NFILE - 1

File Info File Info File Info
Struct Struct Struct

Index O Index 1 Index 2

. = |n use . = Available

There will be a global array of all the open files on the system (bounded by
NFILE) placed in static memory.

Process View

File File File File File File File

Info Info Info Info Info Info Info
Struct Struct Struct Struct Struct Struct Struct
Index O Index 1 Index 2 Index 3 Index 4 Index 5 Index 6

NOFILE-1
Process 1’s File Descriptor Array

NOFILE - 1
Process 2’s File Descriptor Array

(&
()
t
o
)
(S)
=
S
=1
(7))

struct proc

File System Functions

filewrite and fileread

e Writing or reading of a "file"
o Note that file is in quotes. Many things on Unix-like systems are treated as a file. A “file”
can be a real file on disk, or a console, or a pipe (lab 2)!

e Check out the functions readi and writei defined in kernel/fs.c

fileopen

Finds an open file in the global file table to give to the process

File File File File
Info Info Info Info
Struct Struct Struct Struct

Index O Index 1 Index O Index 1

struct proc
struct proc

fileclose

Release the file from this process, will have to clean up if this is the last reference

File File File File
Info Info Info Info
Struct Struct Struct Struct

Index O Index 1 Index O Index 1

struct proc
struct proc

filedup

Duplicates the file descriptor in the process’ file descriptor table
Why do we need this?

File File File File
Info Info Info Info
Struct Struct Struct Struct

Index O Index 1 Index O Index 1

struct proc
struct proc

filestat

e Return statistics to the user about a file
e Check out the function stati in kernel/fs.c

Lab 1 Test Program Code Fragment

e What's going on here?

int main() { .
S (open(e e We mention the file system

return -7; is read only...

} o Why can we write to stdout?

dup(©);
dup(©);

printf(

File Table View

open(“console”, O_RDWR)

File File
Info Info
Struct Struct

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

0 1 2 3

stdin stdout stderr

File Table View

inode
“console”

“ n T_DEV .
open(“console”, O_RDWR) e Resolve inode for
“console”

File File e Find next unused slot in
Info Info ® global array, allocate for
Struct Struct inode

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

0 1 2 3

stdin stdout stderr

File Table View

open(“console”, O_RDWR)
e Find next open slot in
local FD array

File File
Info Info e Return FD to user
Struct Struct

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

0 1 2 3

stdin stdout stderr

File Table View

open(“console”, O_RDWR)
dup(0)
File File
Info Info
Struct Struct

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

stdin stdout stderr

File Table View

inode
“console”

open(“console”, O_RDWR) 185
dup(0) e Find next open slot in

! : local FD arra

File File d

Info Info PRPAPS e Duplicate reference from

Struct Struct user's given FD
Index O Index 1

Global
Array

e Return new FD to user

<

o
o
re]
()
=
£
fres]
()

Cc

0 1 2 3

stdin stdout stderr

File Table View

open(“console”, O_RDWR)

dup(0)

dup(0 : .
4P (0) File File

Info Info

Struct Struct

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

stdin stdout stderr

File Table View

open(“console”, O_RDWR)

dup(0)

dup(0 : .
4P (0) File File

Info Info

Struct Struct

Index O Index 1

Global
Array

(o

o
o
re]
()
=
£
fres]
()

stdin stdout stderr

Console Input/Output

"I

e The console device is just a special file called “console

e Code to handle device files is already handled for you

o Itsinformation is already provided for you when you open the device file.
o Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.

e | thought stdin/stdout/stderr were always available?
o Recall that fork() copies the file descriptor table and there’s always a root process. The
root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.

Multiple Open Calls on Same File

e Draw out the process and global open file table layout after the following:

int fd1 = open(“file.txt”, O_RDONLY);
int fd2 = open(“file.txt”, O_RDWR); // assume we allow writes to files

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)

File File
Info Info
Struct Struct

Index O Index 1

Global
Array

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)

File File
Info Info
Struct Struct

Index O Index 1

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)

File File
Info Info
Struct Struct

Index O Index 1

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDWR)

File File
Info Info
Struct Struct

Index O Index 1

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDWR)

e Each open call allocates
a new file_info struct

File File
e Name lookup returns
Info Info ® same inode

Struct Struct

Index O [le[Y'

Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDWR)

e Each open call allocates
a new file_info struct

File File
e Name lookup returns
Info Info ® same inode

Struct Struct

Index O [le[Y'

System calls

System Calls

e sys_open, sys_read, sys_write, sys_close, sys_dup, sys_fstat

e Main goals of sys functions

o Argument parsing and validation (never trust the user!)
o Call associated file functions

Argument Parsing & Validation

All functions have int n, which will get the n'th argument. Returns 0 on success,
-1 on failure
e int argint(int n, int *ip): Gets an int argument
e int argint64_t(int n, int64_t *ip): Gets a int64_t argument
e int argptr(int n, char **pp, int size): Gets an array of size. Needs size to
check array is within the bounds of the user's address space
e int argstr(int n, char **pp): Tries to read a null terminated string.
You should implement and then use:
e int argfd(int n, int *fd): Will get the file descriptor, making sure it's a valid
file descriptor (in the open file table for the process).

Console Input/Output

"I

e The console device is just a special file called “console

e Code to handle device files is already handled for you
o Itsinformation is already provided for you when you open the device file.
o Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.
e | thought stdin/stdout/stderr were always available?

o Recall that fork() copies the file descriptor table and there’s always a root process. The
root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.

Where is X?

From the top level of the repo, run:

i ”»
g re p = n R X ° -n gives the line numbers

For better results, ctags is a useful tool on attu (man ctags) with support built
into vim and emacs. There are shortcuts in vim/emacs for jumping to where a
function/type/macro/variable is defined when using ctags.

https://andrew.stwrt.ca/posts/vim-ctags/
https://www.emacswiki.org/emacs/EmacsTags%23tags

Staging of work

1.
2.
3.
4.

The global file table
User/Process file table
File functions

System calls

Questions?

