CSE 4517 Section 2
XK Lab 1

Additional things we didn't talk about last week

13th Jan 2021




filestat

e Return statistics to the user about a file
e Check out the function stati in kernel/fs.c



Lab 1 Test Program Code Fragment

e What's going on here?

int main() { .
S (open( e e We mention the file system

return -7; is read only...

} o  Why can we write to stdout?

dup(©);
dup(©);

printf(




File Table View

open(“console”, O_RDWR)

File File
Info Info
Struct Struct

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

0 1 2 3

stdin stdout stderr




File Table View

inode
“console”

“ n T_DEV .
open(“console”, O_RDWR) e Resolve inode for
“console”

File File e Find next unused slot in
Info Info ® global array, allocate for
Struct Struct inode

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

0 1 2 3

stdin stdout stderr




File Table View

open(“console”, O_RDWR)
e Find next open slot in
local FD array

File File
Info Info e Return FD to user
Struct Struct

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

0 1 2 3

stdin stdout stderr




File Table View

open(“console”, O_RDWR)
dup(0)
File File
Info Info
Struct Struct

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

stdin stdout stderr



File Table View

inode
“console”

open(“console”, O_RDWR) 185
dup(0) e Find next open slot in

! : local FD arra

File File d

Info Info PRPAPS e Duplicate reference from

Struct Struct user's given FD
Index O Index 1

Global
Array

e Return new FD to user

<

o
o
re]
()
=
£
fres]
()

Cc

0 1 2 3

stdin stdout stderr




File Table View

open(“console”, O_RDWR)

dup(0)

dup(0 : .
4P (0) File File

Info Info

Struct Struct

Index O Index 1

Global
Array

<

o
o
re]
()
=
£
fres]
()

Cc

stdin stdout stderr



File Table View

open(“console”, O_RDWR)

dup(0)

dup(0 : .
4P (0) File File

Info Info

Struct Struct

Index O Index 1

Global
Array

(o

o
o
re]
()
=
£
fres]
()

stdin stdout stderr



Console Input/Output

"I

e The console device is just a special file called “console

e Code to handle device files is already handled for you

o Itsinformation is already provided for you when you open the device file.
o Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.

e | thought stdin/stdout/stderr were always available?
o Recall that fork() copies the file descriptor table and there’s always a root process. The
root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.



Multiple Open Calls on Same File

e Draw out the process and global open file table layout after the following:

int fd1 = open(“file.txt”, O_RDONLY);
int fd2 = open(“file.txt”, O_RDWR); // assume we allow writes to files



Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)

File File
Info Info
Struct Struct

Index O Index 1

Global
Array




Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)

File File
Info Info
Struct Struct

Index O Index 1




Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)

File File
Info Info
Struct Struct

Index O Index 1




Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDWR)

File File
Info Info
Struct Struct

Index O Index 1




Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDWR)

e Each open call allocates
a new file_info struct

File File
e Name lookup returns
Info Info ® same inode

Struct Struct

Index O [le[Y'




Multiple Open Calls on Same File

open(“file.txt”, O_RDONLY)
open(“file.txt”, O_RDWR)

e Each open call allocates
a new file_info struct

File File
e Name lookup returns
Info Info ® same inode

Struct Struct

Index O [le[Y'




System calls



System Calls

e sys_open, sys_read, sys_write, sys_close, sys_dup, sys_fstat

e Main goals of sys functions

o  Argument parsing and validation (never trust the user!)
o Call associated file functions



Argument Parsing & Validation

All functions have int n, which will get the n'th argument. Returns 0 on success,
-1 on failure
e int argint(int n, int *ip): Gets an int argument
e int argint64_t(int n, int64_t *ip): Gets a int64_t argument
e int argptr(int n, char **pp, int size): Gets an array of size. Needs size to
check array is within the bounds of the user's address space
e int argstr(int n, char **pp): Tries to read a null terminated string.
You should implement and then use:
e int argfd(int n, int *fd): Will get the file descriptor, making sure it's a valid
file descriptor (in the open file table for the process).



Console Input/Output

"I

e The console device is just a special file called “console

e Code to handle device files is already handled for you
o Itsinformation is already provided for you when you open the device file.
o Where? Look at kernel/fs.c, inc/file.h and how the T_DEV file type is used.
e | thought stdin/stdout/stderr were always available?

o Recall that fork() copies the file descriptor table and there’s always a root process. The
root process is actually what opens the console device file, and every process inherits
from root, which is why stdin/stdout/stderr are available on non-root processes.



Where is X?

From the top level of the repo, run:

i ”»
g re p = n R X ° -n gives the line numbers

For better results, ctags is a useful tool on attu (man ctags) with support built
into vim and emacs. There are shortcuts in vim/emacs for jumping to where a
function/type/macro/variable is defined when using ctags.


https://andrew.stwrt.ca/posts/vim-ctags/
https://www.emacswiki.org/emacs/EmacsTags%23tags

Staging of work

1.
2.
3.
4.

The global file table
User/Process file table
File functions

System calls



Questions?



Lab 2 Intro

CSE451 22wi-1/13/22




Admin

- Lab 2designdue 1/21 (next Friday)
- Lab 2 due 1/28 (two weeks from now)

- Lab 2 has adesign doc. The better you fill it out, the more helpful we can be in

commenting on it, and the more prepared you will be for writing the code!
- Putdesigndocinyour repo, similar to lab1design.
- Grading expects how details, not just what -- more than just copying from spec



Design Document

Do it BEFORE you write code

This is mainly for you to think carefully before implementing them
Include whatever design choice that will help you succeed

Knowing what to include is difficult (you probably haven’t done this before!)

You'll learn as the quarter goes
Use lab/designdoc.md & labldesign as a reference of what should be included!

Edge cases, unanswered questions

Office hours are a good time to talk about design



L ocks

Question: Why do we need them?



Synchronization Functions

e Main API for process control: wakeup/sleep
o  Helper: wakeup1 (use it if you already hold the ptable lock)
o  sleep(void* chan, struct spinlock™ Ik)
m  Sets process state to SLEEPING
e i.e.won't be scheduled to run by the scheduler
m Setsthe process’s “channel” variable (chan)
m Yields to the scheduler, switching to another process
o  wakeup(void* chan)
m  Acquire ptable lock
m  Looks for all SLEEPING processes with the given channel (chan), wakes them up
e j.e.setsprocesses state to RUNNABLE
e Conditionvariables
o  Gotosleep using the variable’s address as channel. Signal variable change by wakeup(). When
woken up from sleep, check if condition is now true
m Ifnot, go back tosleep
m  while (Icondition) {sleep(&var, &mylock);}
e Relevantfiles,inc/proc.h, kernel/proc.c



Spinlocks

Disable interrupts and spin until resource is acquired

o

Prevent concurrency issues by not yielding to the scheduler until we are done

Relevant files

o

(@)

inc/spinlock.h
kernel/spinlock.c

Pros/Cons of spin locks?

(@)

@)

o

Fast to acquire resource once it’s freed up
Hangs entire core while waiting
Xk is single-core, so nothing will ever actually spin on one of these (can’t be interrupted while holding)

CPU scheduling relies on timer interrupts, but spinlocks disable interrupts while active.
Trying to schedule while holding a spinlock will cause a

Otherwise, control would never go back to the scheduler
Sleeplocks invoke the scheduler if a resource is unavailable

Question: how to avoid the panic?



Sleeplocks

e Usesthe sleep/wakeup interface from the previous slide, with &lock as channel
o On“acquiresleep”, if the resource is unavailable, it will sleep on &lock
m  Sets state of process to SLEEPING: it will not be scheduled until awoken
o On‘“releasesleep” the code with the sleeplock will wakeup all process waiting on &lock.

m  Sets all processes sleeping on &lock to RUNNABLE: they can be scheduled
m  All waiting processes will wake up. One of them will get the lock. The rest will sleep again.

e Relevant files:
o inc/sleeplock.h
o kernel/sleeplock.c

e Pros/Cons?

o Doesn’t waste CPU time waiting for slow operations (e.g. 10)
o  Process gets descheduled; more overhead



\ Sleeplocks - Brief Example

Key

Running

. Runnable

Sleeping




Sleeplocks - Brief Example

N\

pO acquires lock1

Key

Running

. Runnable

Sleeping




Sleeplocks - Brief Example

pland p2 try to acquire lock1
- since p0 is holding, both go to sleep
- sleep(&lock1, lock1->1k);

chan= chan=
&lock1 &lock1

pO pl p2

Key

Running

. Runnable

Sleeping




Sleeplocks - Brief Example

pO releases lock
- calls wakeup(&lock1), waking up p1 and p2

chan= chan=
&lock1 &lock1

pO

Key

Running

. Runnable

Sleeping




Sleeplocks - Brief Example

pl scheduled to run
- acquires lock1 since no other process is holding

chan= chan=
&lock1 &lock1

pl

Key

Running

. Runnable

Sleeping




Sleeplocks - Brief Example

p2 scheduled to run
- sees that the lock is still being held, goes back to sleep

chan= chan=
&lock1 &lock1

pl

Key

Running

. Runnable

Sleeping




Sleeplocks - Brief Example

p2 scheduled to run
- sees that the lock is still being held, goes back to sleep

chan= chan=
&lock1 &lock1

p2

Key

Running

. Runnable

Sleeping




Sleeplocks - Brief Example

p2 scheduled to run
- sees that the lock is still being held, goes back to sleep

chan= chan=
&lock1 &lock1

p2

Key

Running

. Runnable

Sleeping




Sleeplocks - Brief Example

p2 scheduled to run
- sees that the lock is still being held, goes back to sleep

chan= chan=
&lock1 &lock1

p2 p3

Key

Running

. Runnable

Sleeping




Sleeplocks - Brief Example

Our condition variable in this case is whether the lock
is being held

o  Seethe pattern: while (!condition) {sleep(&var, &mylock);}

Condition Variables can be used for general purposes,
which we’ll see later
o  Key functions, sleep and wakeup in proc.c

// a sleeping lock relinquishes the proces:
// note mesa semantics: process can wakeup
void acquiresleep(struct sleeplock *1k) {
acquire(&lk->1k);
while (1k->Tocked) {
sleep(Tk, &lk->1k);

}

Tk->locked = 1;

1k->pid = myproc()->pid;
release(&lk->1k);

'/ a sleeping lock wakes up a waiting proc
vo1d releasesleep(struct sleeplock *1k) {
i acquire(&lk- >1k)

Tk->Tocked =
1k->pid = 0;
wakeup (1k) ;
release(&lk->1k);

excerpts from proc/sleeplock.c



Spinlocks vs. Sleeplocks, Summary

Which should | use?

e Spinlocks
o Fast to acquire if no contention
o  But,disables interrupts (this is specific to xk. Other systems might not need this)
o  Alsowastes CPU cycles if the wait time is very long
e Sleeplocks
o  More overhead, process getting descheduled means context switch
o But, other processes can run while this process is waiting
e Ruleof thumb...
o  Fastcritical sections - spinlocks
o  Longcritical sections - sleeplocks
e Question: Which should you use for file table?



Curious about locks, still?

See chapter 5 in the textbook
Wait ‘til later in the quarter (fancier locks)



Lab 2 - Processes \
IF IN DOUBT: DO WHAT LINUX DOES



fork()

e Create anew process by duplicating the calling process.

e Returnstwice!
o  0inthe child (newly created) process
o  Child’s PID in the parent
o  Question: how to do this? (We aren't telling you here!)
e What does this entail? What needs to be created, and how do we copy parent state?

o Need to clone all open resources

Files (make sure to increase reference count)
All memory (look into vspaceinit and vspacecopy to copy virtual memory space)

Data to return to the correct place (trap frame)
Anything else?



wait()/exit()

e wait(): Sleep until a child process terminates, then return that child’s PID.
o Need to keep track of some data
m  Need to know parent/child relationships between processes
o  Process shouldn’t return from here until a child has exited...
m  Should put to sleep and invoke the scheduler
e exit(): Halts program and sets state to have its resources reclaimed

e What are some edge cases to consider?
o  Wait should return child’s process ID EVEN [F the child exited before wait() was called
m Can'tcleanup all datain exit()...
o  Parent should go to sleep until a child exits
o  Whatif the parent exits before children terminates? Or never calls wait()?
= Need to clean up, somehow.

e For xk, looping through the process table is reasonable



Lab 2 - Pipe



pipe(pipefds)

Creates a pipe (internal buffer) for reading from/writing to
e From the user perspective: two new files
o  One (“read end”) is not writable
o  Other (“write end”) is not readable

e Inpractice, allows parent/child or child/child to communicate with each other.
You'll want to somehow make this compatible with the read/write(fd) interface



Pipes

e A mechanism for inter-process communication (“IPC”)
e Bycalling sys_pipe, a process sets up a writing and reading end to a “holding area” where
data can be passed between processes

Abstraction of a pipe




Implementation of a pipe




Pipes

e What should happen if the write end or read end are closed (by potentially multiple
readers/writers)? When can you free the buffer?
o  What happens if the buffer is full and we try to write? Empty and try to read?
m  Wait for data to be removed/added
e Spinorsleep?
m  Whatif all of the other endpoint type are closed already?

e Pipesshould be allocated at runtime, as requested
o  What mechanisms does xk have for dynamic memory allocation to the kernel?

e Each pipe should behave like a file so we can reuse the same read() and write()
o Need a way to determine if a struct file is an inode or a pipe



exec(progname, args)

Replaces the process’ state by executing the given program with the given arguments.
This will require you to (carefully!) set up the process’ stack memory and register state.

e This will be tricky! You'll be using a number of vspace__ functions
o  vspaceinit for initialization
o  vspaceloadcode to load code
o  vspaceinitstack to init stack
m  vspacewritetova to write initial arguments into the stack
vspaceinstall to swap in the new vspace
vspacefree to release the old vspace
e Theswapover to the new vspace can be tricky to get right!
o Look at what vspacefree does
o  Remember the difference between copying a struct and copying a pointer



More on exec

e This fully replaces the current process; it does not create a new one
o  Often used with fork. Fork off a child as a new process; that child immediately exec()s a new program.
m It'sabit wasteful to copy the entire memory space in fork() if it’ll be immediately discarded...
m  For now: don't worry about that. Naive fork is ok; lab3 will improve upon it
e Many uses
o  Theshell uses fork/exec to run commands
o  Linuxuses fork/exec to load new programs
m  Windows has a “launch a new process running that” function
m Linuxdoes not.
m  Whenever you run a new process, forks off of the root process and execs.

e Question: how do we pass arguments into the new program?



X86_64 Calling Conventions

%rdi: Holds the first argument

e  %rsi: Holds the second argument
o (%rdx, %rcx, %r8, %r9 come next)
o  Overflow onto stack

e  %rsp: Points to the top of the stack (lowest address)

e Local variables are stored on the stack
e Ifanarrayis an argument, the array contents are stored on the stack and the register
contains a pointer to the array’s beginning



Main

int main(int argc, char** argv)

Argc: The number of elements in argv

Argv: An array of strings representing program arguments
- First is always the name of the program
- Argv[argc] =0



Main's Stack

SZ2G ——
Arg #(argc-1)string

[...]
Arg #1 string
Arg #0 string

9%RDI 0 (why?)

argv[argc - 1]

[...]

arsi
argv[0]
Return PC

Since argv is an array
of pointers, %RSI
points to an array on
the stack

Since each element of
argv is a char® each
element pointsto a
string elsewhere on
the stack

Alignment



Practice Exercise 1

%RSI ”?

%RSP ”?

TODO:

Draw stack layout and
determine register values
for exec called with

“cat cat.txt”



%RSI

Practice Exercise 1: soln

“cat.txt”
‘cat”
Argv[2] = NULL
argv[1]

argv[0]

Return PC

RDI holds argc, which
is 2

RSI holds argv: the
beginning of the argv
array

RSP is properly set to
the bottom of the
stack.

The specific value of
the return PC doesn’t
matter (program
exits from main
without returning)



%RDI

%RSI

%RSP

Practice Exercise 2

[

”

TODO:
Draw stack layout and
determine register values

for exec called with
“kill -9 500”



Practice Exercise 2: soln

“500”
“.Q” e e RDIholds argc, which
A is3
kil ] e RSl holds argv: the
\O beginning of the argv
: e RSPisproperly setto
argv[1] the bottom of the

argv[0] — stack.
%RSI ST BE e The specific value of
the return PC doesn'’t

matter (program
exits from main

%RSP without returning)



