
CSE	452 
Distributed	Systems

Arvind	Krishnamurthy	

Ellis	Michael



Distributed	Systems

• How	to	make	a	set	of	computers	work	together		
– Correctly	
– Efficiently	
– At	(huge)	scale	
–With	high	availability	

• Despite	messages	being	lost	and/or	taking	a	
variable	amount	of	time	

• Despite	nodes	crashing	or	behaving	badly,	or	
being	offline



Distributed	Systems:	Pessimistic	View

Leslie	Lamport,	circa	1990:	

“A	distributed	system	is	one	where	you	can’t	get	
your	work	done	because	some	machine	you’ve	
never	heard	of	is	broken.”



We’ve	Made	Some	Progress

Today	a	distributed	system	is	one	where	you	can	
get	your	work	done	(almost	always):	
– wherever	you	are	

– whenever	you	want	

– even	if	parts	of	the	system	aren’t	working	

– no	matter	how	many	other	people	are	using	it	

– as	if	it	was	a	single	dedicated	system	just	for	you	

– that	(almost)	never	fails



Concurrency	is	Fundamental

• CSE	451:	Operating	Systems	
– How	to	make	a	single	computer	work	reliably	
–With	many	users	and	processes	

• CSE	461:	Computer	Networks	
– How	to	connect	computers	together	
– Networks	are	a	type	of	distributed	system	

• CSE	444:	Database	System	Internals	
– How	to	manage	(big)	data	reliably	and	efficiently	
– Primary	focus	is	single	node	databases	



Course	Project

Build	a	sharded,	linearizable,	available	key-value	
store,	with	dynamic	load	balancing	and	atomic	
multi-key	transactions



Course	Project

Build	a	sharded,	linearizable,	available	key-value	
store,	with	dynamic	load	balancing	and	atomic	
multi-key	transactions	
– Key-value	store:	distributed	hash	table	
– Linearizable:	equivalent	to	a	single	node	
– Available:	continues	to	work	despite	failures	
– Sharded:	keys	on	multiple	nodes	

– Dynamic	load	balancing:	keys	move	between	nodes	

–Multi-key	atomicity:	linearizable	for	multi-key	ops



Project	Mechanics

• Lab	0:	introduction	to	framework	and	tools	
– Do	Lab	0	before	section	this	week	

• Lab	1:	exactly	once	RPC,	key-value	store	
– Next	Wednesday,	individually	

• Lab	2:	primary	backup	(tolerate	failures)	

• Lab	3:	paxos	(tolerate	even	more	failures)	

• Lab	4:	sharding,	load	balancing,	transactions



Project	Tools

• Automated	testing	
– Run	tests:	all	the	tests	we	can	think	of	
–Model	checking:	try	all	possible	message	deliveries	
and	node	failures	

• Visual	debugger	
– Control	and	replay	over	message	delivery,	failures	

• Java	
–Model	checker	needs	to	collapse	equivalent	states



Project	Rules

• OK	
– Consult	with	us	or	other	students	in	the	class	

• Not	OK	
– Look	at	other	people’s	code	(in	class	or	out)	
– Cut	and	paste	code



Some	Career	Advice

Knowledge	>>	grades



Readings	and	Blogs

• There	exists	no	(even	partially)	adequate	
distributed	systems	textbook		

• Instead,	we’ve	assigned:	
– A	few	tutorials/book	chapters	
– 10-15	research	papers	(first	one	a	week	from	Wed.)	

• How	do	you	read	a	research	paper?	
• Blog	seven	papers	
– Write	a	short	thought	about	the	paper	to	the	Canvas	
discussion	thread	(one	per	section)



Problem	Sets

• Three	problem	sets	
– Done	individually	

• No	midterm	

• No	final



Logistics

• Gitlab	for	projects	

• Piazza	for	project	Q&A	

• Canvas	for	blog	posts,	problem	set	turn-ins



Why	Distributed	Systems?

• Conquer	geographic	separation	
– 2.3B	smartphone	users;	locality	is	crucial	

• Availability	despite	unreliable	components	
– System	shouldn’t	fail	when	one	computer	does	

• Scale	up	capacity	
– Cycles,	memory,	disks,	network	bandwidth	

• Customize	computers	for	specific	tasks	
– Ex:	disaggregated	storage,	email,	backup



End	of	Dennard	Scaling

• Moore’s	Law:	transistor	density	improves	at	an	
exponential	rate	(2x/2	years)	

• Dennard	scaling:	as	transistors	get	smaller,	power	
density	stays	constant	

• Recent:	power	increases	with	transistor	density	
– Scale	out	for	performance	

• All	large	scale	computing	is	distributed



Example

• 2004:	Facebook	started	on	a	single	server	
–Web	server	front	end	to	assemble	each	user’s	page	
– Database	to	store	posts,	friend	lists,	etc.	

• 2008:	100M	users	
• 2010:	500M	
• 2012:	1B	

How	do	we	scale	up	beyond	a	single	server?



Facebook	Scaling

• One	server	running	both	webserver	and	DB	

• Two	servers:	webserver,	DB	
– System	is	offline	2x	as	often!	

• Server	pair	for	each	social	community	
– E.g.,	school	or	college	
–What	if	friends	cross	servers?	

–What	if	server	fails?



Two-tier	Architecture

• Scalable	number	of	front-end	web	servers	
– Stateless	(“RESTful”):	if	crash	can	reconnect	the	
user	to	another	server	

– Q:	how	is	the	user	mapped	to	a	front-end?	

• Scalable	number	of	back-end	database	servers	
– Run	carefully	designed	distributed	systems	code	

– If	crash,	system	remains	available	

– Q:	how	do	servers	coordinate	updates?



Three-tier	Architecture

• Scalable	number	of	front-end	web	servers	
– Stateless	(“RESTful”):	if	crash	can	reconnect	the	
user	to	another	server	

• Scalable	number	of	cache	servers	
– Lower	latency	(better	for	front	end)	
– Reduce	load	(better	for	database)	
– Q:	how	do	we	keep	the	cache	layer	consistent?	

• Scalable	number	of	back-end	database	servers	
– Run	carefully	designed	distributed	systems	code



And	Beyond

• Worldwide	distribution	of	users	
– Cross	continent	Internet	delay	~	half	a	second	
– Amazon:	reduction	in	sales	if	latency	>	100ms	

• Many	data	centers	
– One	near	every	user	
– Smaller	data	centers	just	have	web	and	cache	layer	

– Larger	data	centers	include	storage	layer	as	well	
– Q:	how	do	we	coordinate	updates	across	DCs?



Properties	We	Want 
(Google	Paper)

• Fault-Tolerant:	It	can	recover	from	component	
failures	without	performing	incorrect	actions.	
(Lab	2)	

• Highly	Available:	It	can	restore	operations,	
permitting	it	to	resume	providing	services	even	
when	some	components	have	failed.	(Lab	3)	

• Consistent:	The	system	can	coordinate	actions	
by	multiple	components	often	in	the	presence	
of	concurrency,	asynchrony,	and	failure.	(Labs	
2-4)



Typical	Year	in	a	Data	Center
• ~0.5	overheating	(power	down	most	machines	in	<5	mins,	~1-2	days	to	

recover)	
• ~1	PDU	failure	(~500-1000	machines	suddenly	disappear,	~6	hours	to	come	

back)	
• ~1	rack-move	(plenty	of	warning,	~500-1000	machines	powered	down,	~6	

hours)	
• ~1	network	rewiring	(rolling	~5%	of	machines	down	over	2-day	span)	
• ~20	rack	failures	(40-80	machines	instantly	disappear,	1-6	hours	to	get	back)	
• ~5	racks	go	wonky	(40-80	machines	see	50%	packetloss)	
• ~8	network	maintenances	(4	might	cause	~30-minute	random	connectivity	

losses)	
• ~12	router	reloads	(takes	out	DNS	and	external	vips	for	a	couple	minutes)	
• ~3	router	failures	(have	to	immediately	pull	traffic	for	an	hour)	
• ~dozens	of	minor	30-second	blips	for	dns	
• ~1000	individual	machine	failures	
• ~thousands	of	hard	drive	failures	
• slow	disks,	bad	memory,	misconfigured	machines,	flaky	machines,	etc



Other	Properties	We	Want 
(Google	Paper)

• Scalable:	It	can	operate	correctly	even	as	some	
aspect	of	the	system	is	scaled	to	a	larger	size.	
(Lab	4)	

• Predictable	Performance:	The	ability	to	provide	
desired	responsiveness	in	a	timely	manner.		
(Week	9)	

• Secure:	The	system	authenticates	access	to	
data	and	services	(CSE	484)


