
“Paxos Made Moderately
Complex”

Made Moderately Simple

State machine replication

Reminder: want to agree on order of ops

Can think of operations as a log

Op1 Op2 Op3 Op4 Op5 Op6

Op1 Op2 Op3 Op4 Op5 Op6

S1

S3

S2

Put k1 v1 Put k2 v2

Paxos?

Paxos

Paxos =

Phase 1
- Send prepare messages
- Pick value to accept

Phase 2
- Send accept messages

Can we do better?

Phase 1: “leader election”

- Deciding whose value we will use

Phase 2: “commit”

- Leader makes sure it’s still leader, commits value

What if we split these phases?

- Lets us do operations with one round-trip

Roles in PMMC

Replicas (like learners)

- Keep log of operations, state machine, configs

Leaders (like proposers)

- Get elected, drive the consensus protocol

Acceptors (simpler than in Paxos Made Simple!)

- “Vote” on leaders

A note about ballots in PMMC

(leader, seqnum) pairs

Isomorphic to the system we discussed earlier

0

1

2

3

0, 4, 8, 12, 16, …

1, 5, 9, 13, 17, …

2, 6, 10, 14, 18, …

3, 7, 11, 15, 19, …

A note about ballots in PMMC

(leader, seqnum) pairs

Isomorphic to the system we discussed earlier

0

1

2

3

0.0, 1.0, 2.0, 3.0, 4.0, …

0.1, 1.1, 2.1, 3.1, 4.1, …

0.2, 1.2, 2.2, 3.2, 4.2, …

0.3, 1.3, 2.3, 3.3, 4.3, …

Paxos Made Moderately Complex Made Simple

Paxos Made Moderately Complex Made Simple

Acceptors

Acceptor

ballot_num: 0
accepted:[]

Acceptors

Acceptor

ballot_num: _
accepted:[]

p1a(0.1)

Acceptors

Acceptor

ballot_num: 0.1
accepted:[]

p1a(0.1)

Acceptors

Acceptor

ballot_num: 0.1
accepted:[]

p1a(0.1)

p1b([])

Acceptors

Acceptor

ballot_num: 0.1
accepted:[]

Acceptors

Acceptor

ballot_num: 0.1
accepted:[]

p1a(0.0)

Acceptors

Acceptor

ballot_num: 0.1
accepted:[]

p1a(0.0)

Nope!

Acceptors

Acceptor

ballot_num: 0.1
accepted:[]

Acceptors

Acceptor

ballot_num: 0.1
accepted:[]

p2a(<0.1, 0, A>)

Acceptors

Acceptor

ballot_num: 0.1
accepted:[<0.1, 0, A>]

p2a(<0.1, 0, A>)

Acceptors

Acceptor

ballot_num: 0.1
accepted:[<0.1, 0, A>]

p2a(<0.1, 0, A>)

OK!

Acceptors

Acceptor

ballot_num: 0.1
accepted:[<0.1, 0, A>]

Acceptors

Acceptor

ballot_num: 0.1
accepted:[<0.1, 0, A>]

p2a(<0.0, 0, B>)

Acceptors

Acceptor

ballot_num: 0.1
accepted:[<0.1, 0, A>]

p2a(<0.0, 0, B>)

Nope!

Acceptors

Acceptor

ballot_num: 0.1
accepted:[<0.1, 0, A>]

Acceptors

- Ballot numbers increase

- Only accept values from current ballot

- Never remove ballots

- If a value v is chosen by a majority on ballot b, then
any value accepted by any acceptor in the same slot
on ballot b’ > b has the same value

Paxos Made Moderately Complex Made Simple

Paxos Made Moderately Complex Made Simple

Leader: Getting Elected

Leader

active: false
ballot_num: 0.0
proposals: []

Leader: Getting Elected

Leader

active: false
ballot_num: 0.0
proposals: []

Acceptor

Acceptor

Acceptor

p1a(0.0)

Leader: Getting Elected

Leader

active: false
ballot_num: 0.0
proposals: []

Acceptor

Acceptor

Acceptor

Nope!

Nope!

Leader: Getting Elected

Leader

active: false
ballot_num: 1.0
proposals: []

Acceptor

Acceptor

Acceptor

Leader: Getting Elected

Leader

active: false
ballot_num: 1.0
proposals: []

Acceptor

Acceptor

Acceptor

Or…

Leader: Getting Elected

Leader

active: false
ballot_num: 0.0
proposals: []

Acceptor

Acceptor

Acceptor

OK([])!

OK([])!

Leader: Getting Elected

Leader

active: true
ballot_num: 0.0
proposals: []

Acceptor

Acceptor

Acceptor

Paxos Made Moderately Complex Made Simple

Paxos Made Moderately Complex Made Simple

Leader: Handling proposals

Leader

active: true
ballot_num: 0.0
proposals: []

Acceptor

Acceptor

Acceptor

Replica

Op1 should be A
(A = “Put k1 v1”)

Leader: Handling proposals

Leader

active: true
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Replica

Leader: Handling proposals

Leader

active: true
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

p2a(<0.0, 1, A>)

Replica

Leader: Handling proposals

Leader

active: true
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Replica

Nope!

Nope!

Leader: Handling proposals

Leader

active: false
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Replica

Leader: Handling proposals

Leader

active: false
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Replica

Or…

Leader: Handling proposals

Leader

active: true
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Replica

OK!

OK!

Leader: Handling proposals

Leader

active: true
ballot_num: 0.0
proposals: [<1, A>]

Acceptor

Acceptor

Acceptor

Replica Replica Replica

Op1 is A

Paxos Made Moderately Complex Made Simple

Election revisited

Acceptor

ballot_num: 2.1
accepted:[<2.1, 1, A>]

Leader

active: false
ballot_num: 3.0
proposals: [<1, B>]

Election revisited

Acceptor

ballot_num: 2.1
accepted:[<2.1, 1, A>]

Leader

active: false
ballot_num: 3.0
proposals: [<1, B>]

p1a(3.0)

Election revisited

Acceptor

ballot_num: 3.0
accepted:[<2.1, 1, A>]

Leader

active: false
ballot_num: 3.0
proposals: [<1, B>]

Election revisited

Acceptor

ballot_num: 3.0
accepted:[<2.1, 1, A>]

Leader

active: false
ballot_num: 3.0
proposals: [<1, B>]

OK([<2.1, 1, A>])

Election revisited

Acceptor

ballot_num: 3.0
accepted:[<2.1, 1, A>]

Leader

active: true
ballot_num: 3.0
proposals: [<1, A>]

Leaders

- Only propose one value per ballot and slot

- If a value v is chosen by a majority on ballot b, then
any value proposed by any leader in the same slot on
ballot b’ > b has the same value

Paxos Made Moderately Complex Made Simple

Paxos Made Moderately Complex Made Simple

Replicas

Op1 Op2 Op3 Op4 Op5 Op6

Put k1 v1 Put k2 v2

Replica

Replicas

Op1 Op2 Op3 Op4 Op5 Op6

Put k1 v1 Put k2 v2 App k1 v1 App k2 v2

slot_out slot_in

Replica

Replicas

Op1 Op2 Op3 Op4 Op5 Op6

Put k1 v1 Put k2 v2 App k1 v1 App k2 v2

slot_out slot_in

Replica

Leader
decision(3, “App k1 v1”)

Replicas

Op1 Op2 Op3 Op4 Op5 Op6

Put k1 v1 Put k2 v2 App k1 v1 App k2 v2

slot_out slot_in

Replica

Leader

Replicas

Op1 Op2 Op3 Op4 Op5 Op6

Put k1 v1 Put k2 v2 App k1 v1 App k2 v2

slot_out slot_in

Replica

Leader
decision(4, “Put k3 v3”)

Replicas

Op1 Op2 Op3 Op4 Op5 Op6

Put k1 v1 Put k2 v2 App k1 v1 Put k3 v3

slot_out slot_in

Replica

Leader

App k2 v2

propose(5, “App k2 v2”)

Paxos Made Moderately Complex Made Simple

When to run for office

When should a leader try to get elected?

- At the beginning of time

- When the current leader seems to have failed

Paper describes an algorithm, based on pinging the
leader and timing out

If you get preempted, don’t immediately try for election
again!

Reconfiguration

All replicas must agree on who the leaders and
acceptors are

How do we do this?

Reconfiguration

All replicas must agree on who the leaders and
acceptors are

How do we do this?

- Use the log!

- Commit a special reconfiguration command

- New config applies after WINDOW slots

Reconfiguration

What if we need to reconfigure now and client
requests aren’t coming in?

Reconfiguration

What if we need to reconfigure now and client
requests aren’t coming in?

- Commit no-ops until WINDOW is cleared

Other complications
State simplifications

- Can track much less information, esp. on replicas

Garbage collection

- Unbounded memory growth is bad

- Lab 3: track finished slots across all instances,
garbage collect when everyone has learned result

Read-only commands

- Can’t just read from replica (why?)

- But, don’t need their own slot

