
Two-phase commit

Implications of Two Generals

Cannot get agreement in a distributed system to
perform some action at the same time.

What if we want to update data stored in multiple
locations? In a linearizable fashion?

Perform group of ops at logical instant in time, not
physical instant

Setting

Atomic update to data stored in multiple locations

Ex: Multikey update to a sharded key-value store

Ex: Bank transfer

Want:
- Atomicity: all or none
- Linearizability: consistent with sequential order
- No stale reads, no write buffering

For now, let’s ignore availability

One Phase Commit?

Central coordinator decides, tells everyone else

What if some participants can’t do the request?

- Bank account has zero balance

- Bank account doesn’t exist, …

One Phase Commit?

How do we get atomicity/linearizability?

- Need to apply changes at same logical point in time

- Need all other changes to appear before/after

Acquire read/write lock on each location

- If lock is busy, need to wait

For linearizability, need read/write lock on all locations at
same time

Two Phase Commit

Central coordinator asks

Participants commit to commit

- Acquire any locks

- In the meantime no other ops allowed on that key

- Delay other concurrent 2PC operations

Central coordinator decides, tells everyone else

- Release locks

Calendar event creation

Doug Woos has three advisors (Tom, Zach, Mike)

Want to schedule a meeting with all of them

- Let’s try Tues at 11, people are usually free then

Calendars all live on different nodes!

Other students also trying to schedule meetings

Nodes can fail, messages can be dropped (of course)

Calendar event creation (wrong)

Tom Mike Zach

Doug

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meet at 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

OK

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meet at 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

OK

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meet at 11 on Tues

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Busy!

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (wrong)

Tom Mike Zach

Doug

Meeting Doug
@ 11 on Tues

Meeting Doug
@ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Calendar event creation (better)

Tom Mike Zach

Doug

Meet at 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

OK

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Meet at 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues OK

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Meet at 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Busy!

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Maybe Meeting
Doug @ 11 on Tues

Never mind!

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Calendar event creation (better)

Tom Mike Zach

Doug

Maybe Meeting
Doug @ 11 on Tues

Never mind!

Calendar event creation (better)

Tom Mike Zach

Doug

Two-phase commit

Atomic commit protocol (ACP)

- Every node arrives at the same decision

- Once a node decides, it never changes

- Transaction committed only if all nodes vote Yes

- In normal operation, if all processes vote Yes the
transaction is committed

- If all failures are eventually repaired, the
transaction is eventually either committed or aborted

Two-phase commit
Roles:

- Participants (Mike, Tom, Zach): nodes that must
update data relevant to the transaction

- Coordinator (Doug): node responsible for executing
the protocol (might also be a participant)

Messages:

- PREPARE: Can you commit this transaction?

- COMMIT: Commit this transaction

- ABORT: Abort this transaction

2PC without failures
Coordinator Participant Participant

Prepare
Prepare

Yes

Yes
Commit

Commit

Yes

2PC without failures
Coordinator Participant Participant

Prepare
Prepare

Yes

NO
ABORT

ABORT

Nope

Failures

In the absence of failures, 2PC is pretty simple!

When can interesting failures happen?

- Participant failures?

- Coordinator failures?

- Message drops?

Participant failures:
Before sending response?

Coordinator Participant Participant
Prepare

Prepare

Yes

No Abort

Abort

Decision?

Participant failures:
After sending vote?

Coordinator Participant Participant
Prepare

Prepare

Yes

Yes
Commit

Commit

Yes

Participant failures:
Lost vote?

Coordinator Participant Participant
Prepare

Prepare

Yes
Yes

No Abort

Abort

Decision?

Coodinator failures:
Before sending prepare

Coordinator Participant Participant

Prepare
Prepare

Yes
Yes

Yes Commit
Commit

Coordinator failures:
After sending prepare

Coordinator Participant Participant
Prepare

Prepare

Yes Yes
Yes Commit

Commit

Prepare
Prepare

Coordinator failures:
After receiving votes

Coordinator Participant Participant
Prepare

Prepare

Yes Yes
Yes Commit

Commit

Prepare
Prepare

Yes Yes

Coordinator failures:
After sending decision

Coordinator Participant Participant
Prepare

Prepare

Yes
Commit

Yes Yes

Commit

Decision?

Do we need the coordinator?
Coordinator Participant Participant

Prepare
Prepare

Yes

Commit

Commit

Yes Yes

Decision?

Can the Participants Decide
Amongst Themselves?

Coordinator Participant Participant
Prepare

Prepare

Yes
or

No?

Commit?

Decision?

Yes

Yes

Can the Participants Decide
Amongst Themselves?

• Yes, if the participants can know for certain that the
coordinator has failed

• What if the coordinator is just slow?

• Participants decide to commit!

• Coordinator times out, declares abort!

2PC is a blocking protocol

• A blocking protocol is one that cannot make
progress if some of the participants are unavailable
(either down or partitioned).

• It has fault-tolerance but not availability.

• This limitation is fundamental.

Can We Make 2PC Non-Blocking?

• Paxos is non-blocking

• We can use Paxos to update individual keys

• Can we use Paxos to update multiple keys?

• If both are on the same shard, easy

• What if on different shards?

State
machine

Paxos

Lab 4

State
machine

State
machine

Paxos

State
machine

Paxos

Paxos

Shard master

State
machine

Paxos

Lab 4

State
machine

State
machine

Paxos

State
machine

Paxos

Paxos

Shard master

2PC

2PC

Coordinator

State
machine

Paxos

Lab 4

State
machine

State
machine

Paxos

State
machine

Paxos

Paxos

Shard master

2PC

2PC

Coordinator

2PC on Paxos
Coordinator Participant Participant

Prepare
Prepare

Yes

Yes
Commit

Commit

Yes

Paxos

Paxos

Paxos

Paxos

Paxos: state machine replication of operation log

Two Phase Commit on Paxos
Client requests multi-key operation at coordinator

Coordinator logs request

- Paxos: available despite node failures

Coordinator sends prepare

Replicas decide to commit/abort, log result

- Paxos: available despite node failures

Coordinator collects replies, log result

- Paxos: available despite node failures

Coordinator sends commit/abort

Replicas record result

- Paxos: available despite node failures

