
GFS

Arvind Krishnamurthy
(based on slides from Tom Anderson 

& Dan Ports)



Google Stack

– GFS: large-scale storage for bulk data
– Chubby: Paxos storage for coordination
– BigTable: semi-structured data storage
– MapReduce: big data computation on key-value 

pairs
– MegaStore, Spanner: transactional storage with geo-

replication



GFS

• Needed: distributed file system for storing 
results of web crawl and search index

• Why not use NFS?
– very different workload characteristics!
– design GFS for Google apps, Google apps for GFS

• Requirements: 
– Fault tolerance, availability, throughput, scale
– Concurrent streaming reads and writes



GFS Workload

• Producer/consumer
– Hundreds of web crawling clients
– Periodic batch analytic jobs like MapReduce
– Throughput, not latency

• Big data sets (for the time):
– 1000 servers, 300 TB of data stored

• Later: BigTable tablet log and SSTables
• Even later: Workload now?



GFS Workload

• Few million 100MB+ files
– Many are huge

• Reads: 
– Mostly large streaming reads
– Some sorted random reads

• Writes:
– Most files written once, never updated
– Most writes are appends, e.g., concurrent workers



GFS Interface

• app-level library
– not a kernel file system
– Not a POSIX file system

• create, delete, open, close, read, write, append
– Metadata operations are linearizable
– File data eventually consistent (stale reads)

• Inexpensive file, directory snapshots



Life without random writes
• Results of a previous crawl:

www.page1.com -> www.my.blogspot.com

www.page2.com -> www.my.blogspot.com

• New results: page2 no longer has the link, but there is a new 
page, page3:

www.page1.com -> www.my.blogspot.com

www.page3.com -> www.my.blogspot.com

• Option: delete old record (page2); insert new record (page3)

– requires locking, hard to implement

• GFS: append new records to the file atomically

http://www.page1.com
http://www.my.blogspot.com
http://www.page2.com
http://www.my.blogspot.com
http://www.page1.com
http://www.my.blogspot.com
http://www.page3.com
http://www.my.blogspot.com


GFS Architecture

• each file stored as 64MB chunks

• each chunk on 3+ chunkservers

• single master stores metadata



“Single” Master Architecture
• Master stores metadata:
– File name space, file name -> chunk list
– chunk ID -> list of chunkservers holding it
– Metadata stored in memory (~64B/chunk)

• Master does not store file contents
– All requests for file data go directly to chunkservers

• Hot standby replication using shadow masters
– Fast recovery

• All metadata operations are linearizable



Master Fault Tolerance

• One master, set of replicas
– Master chosen by Chubby

• Master logs (some) metadata operations
– Changes to namespace, ACLs, file -> chunk IDs
– Not chunk ID -> chunkserver; why not?

• Replicate operations at shadow masters and log 
to disk, then execute op

• Periodic checkpoint of master in-memory data
– Allows master to truncate log, speed recovery
– Checkpoint proceeds in parallel with new ops



Handling Write Operations

• Mutation is write or append
• Goal: minimize master 

involvement
• Lease mechanism
– Master picks one replica 

as primary; gives it a lease 
– Primary defines a serial 

order of mutations
• Data flow decoupled from 

control flow



Write Operations
• Application originates write request

• GFS client translates request from (fname, data) 
--> (fname, chunk-index) sends it to master

• Master responds with chunk handle and 
(primary+secondary) replica locations

• Client pushes write data to all locations; data is 
stored in chunkservers’ internal buffers

• Client sends write command to primary



Write Operations (contd.)
• Primary determines serial order for data instances 

stored in its buffer and writes the instances in that 
order to the chunk

• Primary sends serial order to the secondaries and 
tells them to perform the write

• Secondaries respond to the primary

• Primary responds back to client

• If write fails at one of the chunkservers, client is 
informed and retries the write/append, but another 
client may read stale data from chunkserver



At Least Once Append

• If failure at primary or any replica, retry append 
(at new offset)
– Append will eventually succeed!
– May succeed multiple times!

• App client library responsible for 
– Detecting corrupted copies of appended records
– Ignoring extra copies (during streaming reads)

• Why not append exactly once?



Caching

• GFS caches file metadata on clients
– Ex: chunk ID -> chunkservers
– Used as a hint: invalidate on use
– TB file => 16K chunks

• GFS does not cache file data on clients



Garbage Collection

• File delete => rename to a hidden file
• Background task at master
– Deletes hidden files
– Deletes any unreferenced chunks

• Simpler than foreground deletion
– What if chunk server is partitioned during delete?

• Need background GC anyway
– Stale/orphan chunks



Data Corruption

• Files stored on Linux, and Linux has bugs
– Sometimes silent corruptions

• Files stored on disk, and disks are not fail-stop
– Stored blocks can become corrupted over time
– Ex: writes to sectors on nearby tracks
– Rare events become common at scale

• Chunkservers maintain per-chunk CRCs (64KB)
– Local log of CRC updates
– Verify CRCs before returning read data
– Periodic revalidation to detect background failures



Discussion

• Is this a good design?
• Can we improve on it?
• Will it scale to even larger workloads?



~15 years later

• Scale is much bigger:
– now 10K servers instead of 1K
– now 100 PB instead of 100 TB

• Bigger workload change: updates to small files!
• Around 2010: incremental updates of the

Google search index



GFS -> Colossus

• GFS scaled to ~50 million files, ~10 PB
• Developers had to organize their apps around 

large append-only files (see BigTable)
• Latency-sensitive applications suffered
• GFS eventually replaced with a new design, 

Colossus



Metadata scalability

• Main scalability limit: single master stores all 
metadata

• HDFS has same problem (single NameNode)
• Approach: partition the metadata among 

multiple masters
• New system supports ~100M files per master

and smaller chunk sizes: 1MB instead of 64MB



Reducing Storage Overhead

• Replication: 3x storage to handle two copies

• Erasure coding more flexible: m pieces, n check 
pieces

– e.g., RAID-5: 2 disks, 1 parity disk (XOR of other two) 
=> 1 failure w/ only 1.5 storage

• Sub-chunk writes more expensive (read-modify-write)

• After a failure: get all the other pieces, generate missing
one



Erasure Coding

• 3-way replication: 
3x overhead, 2 failures tolerated, easy recovery

• Google Colossus: (6,3) Reed-Solomon code
1.5x overhead, 3 failures

• Facebook HDFS: (10,4) Reed-Solomon
1.4x overhead, 4 failures, expensive recovery

• Azure: more advanced code (12, 4)
1.33x, 4 failures, same recovery cost as Colossus


