GFS

Arvind Krishnamurthy

(based on slides from Tom Anderson
& Dan Ports)

Google Stack

— GFS: large-scale storage for bulk data
— Chubby: Paxos storage for coordination
— BigTable: semi-structured data storage

— MapReduce: big data computation on key-value
pairs

— MegaStore, Spanner: transactional storage with geo-
replication

GFS

* Needed: distributed file system for storing
results of web crawl and search index

* Why not use NFS?
— very different workload characteristics!
— design GFS for Google apps, Google apps for GFS

* Requirements:
— Fault tolerance, availability, throughput, scale

— Concurrent streaming reads and writes

GFS Workload

Producer/consumer

— Hundreds of web crawling clients

— Periodic batch analytic jobs like MapReduce
— Throughput, not latency

Big data sets (for the time):
— 1000 servers, 300 TB of data stored

Later: BigTable tablet log and SSTables
Even later: Workload now?

GFS Workload

e Few million 100MB+ files
— Many are huge
e Reads:

— Mostly large streaming reads
— Some sorted random reads

* Writes:
— Most files written once, never updated

— Most writes are appends, e.g., concurrent workers

GFS Interface

e app-level library
— not a kernel file system
— Not a POSIX file system

* create, delete, open, close, read, write, append
— Metadata operations are linearizable
— File data eventually consistent (stale reads)

* |[nexpensive file, directory snapshots

Life without random writes

® Results of a previous crawil:
www.pagel.com -> www.my.blogspot.com

WWW.pageZ.com -> www.my.blogspot.com

® New results: page?2 no longer has the link, but there is a new
page, pageas:

www.pagel.com -> www.my.blogspot.com

www.page3d.com -> www.Mmy.blogspot.com

® Option: delete old record (page?); insert new record (page3)
—requires locking, hard to implement

® GFS: append new records to the file atomically

http://www.page1.com
http://www.my.blogspot.com
http://www.page2.com
http://www.my.blogspot.com
http://www.page1.com
http://www.my.blogspot.com
http://www.page3.com
http://www.my.blogspot.com

GFS Architecture

Application| _ : 1S mactor o /har
H (file name, chunk index) GFS master _» /Too/ba
"o . : . - Yef()
GFS client [File namespace chunk 2ef0
(chunk handle, ‘;'
chunk locations) ;
/ Legend:
‘ mmm) Dala messages
“ . “ \ . TN Y
Instructions to chunkserver — Control messages
Chunkserver state
(chunk handle, byte range) [¥ L
GFS chunkserver GFS chunkserver
chunk data
Linux file system Linux file system

ga- log-

e each file stored as 64MB chunks

e each chunk on 3+ chunkservers

* single master stores metadata

“Single” Master Architecture

Master stores metadata:

— File name space, file name -> chunk list
— chunk ID -> list of chunkservers holding it
— Metadata stored in memory (~64B/chunk)

Master does not store file contents
— All requests for file data go directly to chunkservers

Hot standby replication using shadow masters
— Fast recovery

All metadata operations are linearizable

Master Fault Tolerance

One master, set of replicas
— Master chosen by Chubby

Master logs (some) metadata operations
— Changes to namespace, ACLs, file -> chunk IDs
— Not chunk ID -> chunkserver; why not?

Replicate operations at shadow masters and log
to disk, then execute op

Periodic checkpoint of master in-memory data
— Allows master to truncate log, speed recovery

— Checkpoint proceeds in parallel with new ops

Handling Write Operations

4 step 1
=
« Client | Master

Goal: minimize master l
involvement

Mutation is write or append

| S

Secondary [

Replica A

Lease mechanism 6
— Master picks one replica . 1
))) Primary — [£— .
as primary; gives it a lease L—+ |<'Sf:|1£[: —
. .) Legend:
— Primary defines a serial 1 -
order of mutations - 6 o
Secondary - Data

ReplicaB f——

Data flow decoupled from
control flow

Write Operations

* Application originates write request

* GFS client translates request from (fname, data)
--> (fname, chunk-index) sends it to master

* Master responds with chunk handle and
(primary+secondary) replica locations

* Client pushes write data to all locations; data is
stored in chunkservers’ internal buffers

* Client sends write command to primary

Write Operations (contd.)

Primary determines serial order for data instances
stored in its buffer and writes the instances in that
order to the chunk

Primary sends serial order to the secondaries and
tells them to perform the write

Secondaries respond to the primary
Primary responds back to client

If write fails at one of the chunkservers, client is
informed and retries the write/append, but another
client may read stale data from chunkserver

At Least Once Append

 |f failure at primary or any replica, retry append
(at new offset)

— Append will eventually succeed!

— May succeed multiple times!

* App client library responsible for
— Detecting corrupted copies of appended records

— lgnoring extra copies (during streaming reads)

* Why not append exactly once?

Caching

* GFS caches file metadata on clients
— Ex: chunk ID -> chunkservers
— Used as a hint: invalidate on use
— TB file => 16K chunks

e GFS does not cache file data on clients

Garbage Collection

File delete => rename to a hidden file

Background task at master
— Deletes hidden files

— Deletes any unreferenced chunks

Simpler than foreground deletion

— What if chunk server is partitioned during delete?

Need background GC anyway
— Stale/orphan chunks

Data Corruption

* Files stored on Linux, and Linux has bugs
— Sometimes silent corruptions

* Files stored on disk, and disks are not fail-stop
— Stored blocks can become corrupted over time
— Ex: writes to sectors on nearby tracks
— Rare events become common at scale

* Chunkservers maintain per-chunk CRCs (64KB)
— Local log of CRC updates

— Verify CRCs before returning read data
— Periodic revalidation to detect background failures

Discussion

* |s this a good design?
* Can we improve on it?
* Will it scale to even larger workloads?

~15 years later

e Scale is much bigger:

— now 10K servers instead of 1K
— now 100 PB instead of 100 TB

* Bigger workload change: updates to small files!

* Around 2010: incremental updates of the
Google search index

GFS -> Colossus

GFS scaled to ~50 million files, ~10 PB

Developers had to organize their apps around
arge append-only files (see BigTable)

_atency-sensitive applications suffered

GFS eventually replaced with a new design,
Colossus

Metadata scalability

Main scalability limit: single master stores all
metadata

HDFS has same problem (single NameNode)

Approach: partition the metadata among
multiple masters

New system supports “100M files per master
and smaller chunk sizes: 1MB instead of 64MB

Reducing Storage Overhead

Replication: 3x storage to handle two copies

Erasure coding more flexible: m pieces, n check
pleces

— e.g., RAID-5: 2 disks, 1 parity disk (XOR of other two)
=> 1 failure w/ only 1.5 storage

Sub-chunk writes more expensive (read-modify-write)

After a failure: get all the other pieces, generate missing
one

Erasure Coding

3-way replication:
3x overhead, 2 failures tolerated, easy recovery

Google Colossus: (6,3) Reed-Solomon code
1.5x overhead, 3 failures

Facebook HDFS: (10,4) Reed-Solomon
1.4x overhead, 4 failures, expensive recovery

Azure: more advanced code (12, 4)
1.33x, 4 failures, same recovery cost as Colossus

