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BYZANTINE FAULTS

• Also called "general" or "arbitrary" faults. 

• Faulty nodes can take any actions. They can 
send any messages, collude with each other, etc. 
in an attempt to "trick" the non-faulty nodes and 
subvert the protocol. 

• Why this model?



STRANGE THINGS HAPPEN AT SCALE

• Hardware failures are real and can 
cause both crashes and aberrant 
behavior. 

• Cosmic rays from outer space (!) 
can and will randomly flip bits in 
memory. 

• Software bugs are all too 
common. 

• Security vulnerabilities can let 
attackers into distributed systems.
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STRANGE THINGS HAPPEN AT SCALE

• Hardware failures are real and can 
cause both crashes and aberrant 
behavior. 

• Cosmic rays from outer space (!) 
can and will randomly flip bits in 
memory. 

• Software bugs are all too 
common. 

• Security vulnerabilities can let 
attackers into distributed systems.

We'll come back to these 
at the end of the lecture.
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SETUP

• 𝑛=3𝑓+1 servers, 𝑓 of which can be faulty. Unlimited clients. 

• We assume public-key infrastructure. Servers and clients can sign messages 
and verify signatures. Signatures aren't forgeable. 

- We denote message 𝑚 with ⟨𝑚⟩, and message 𝑚 signed by 𝑝 as ⟨𝑚⟩𝑝 . 

• Servers also have access to a digest function (cryptographic hash) on 
messages, 𝐷(𝑚), which we assume is collision-resistant. 

• The attacker controls 𝑓 faulty servers and knows the protocol the other 
servers are running. The attacker also has control over the network and can 
delay and reorder messages to all nodes.



GOAL

The goal, as in Paxos, is state-machine replication. 

We want to guarantee safety when there are 𝑓 or 
fewer failures (or an unlimited number of crash 
failures) and liveness during periods of synchrony. 

Easy, right?



PBFT: THE BASIC IDEA

Practical Byzantine Fault Tolerance (PBFT) is leader-
based, just like Paxos. But it more closely resembles 
Viewstamped Replication [Oki and Liskov '88]. 

• The system progresses through a series of 
numbered views. There is a single leader 
associated with each view. 

• The clients will send their commands to the leader. 

• The leader assigns the command a sequence 
number (slot number) and forwards to the 
followers. 

• The protocol ensures that this decision is 
permanently fixed; then they respond to the client.
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WHAT'S THE WORST THAT COULD HAPPEN?

• The leader could be faulty. 

- It could assign different commands to the same 
sequence number. 

- It could try to send the wrong result to the client. 

- It could ignore the clients altogether. 

• The followers could also be faulty and lie about the 
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• The leader could be faulty. 

- It could assign different commands to the same 
sequence number. 

- It could try to send the wrong result to the client. 

- It could ignore the clients altogether. 

• The followers could also be faulty and lie about the 
commands they received.

Clients wait for 𝑓+1 
matching replies.

Followers can replace a 
misbehaving leader with a 

view change.



WHAT ABOUT FAULTY CLIENTS?

• We assume that there is some existing way for 
clients to authenticate themselves with the 
system. 

• Access controls can be used to restrict what 
each client is allowed to do. 

• System administrators (or the system itself ) can 
revoke access for faulty clients.



PAPERS, PLEASE

• Servers don't take each others' word for 
anything. They require proof. 

• In order to verify that a client's command is 
legitimate, they need the signed message from 
the client (or proof thereof ). 

• All other steps in the system are taken only after 
receiving signed messages from a quorum of 
2𝒇+1 servers. Servers can also collect these 
messages into certificates they can use to prove 
to each other the legitimacy of certain steps.



PAPERS, PLEASE

• Servers don't take each others' word for 
anything. They require proof. 

• In order to verify that a client's command is 
legitimate, they need the signed message from 
the client (or proof thereof ). 

• All other steps in the system are taken only after 
receiving signed messages from a quorum of 
2𝒇+1 servers. Servers can also collect these 
messages into certificates they can use to prove 
to each other the legitimacy of certain steps.
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• Servers don't take each others' word for 
anything. They require proof. 

• In order to verify that a client's command is 
legitimate, they need the signed message from 
the client (or proof thereof ). 

• All other steps in the system are taken only after 
receiving signed messages from a quorum of 
2𝒇+1 servers. Servers can also collect these 
messages into certificates they can use to prove 
to each other the legitimacy of certain steps.

Certificate



PROTOCOL OVERVIEW

Three sub-protocols: 

1. Normal operations 

Phase 1: Pre-prepare 

Phase 2: Prepare 

Phase 3: Commit 

2. View change 

3. Garbage collection

Server state: 

• Current view 

• State machine checkpoint 

• Current state machine state 

• Log of all not garbage 
collected messages



NORMAL OPERATIONS (I)

leader 𝑙

follow
ers

client 𝑐 



NORMAL OPERATIONS (I)

leader 𝑙

follow
ers

client 𝑐 

𝑚=⟨REQUEST⟩𝑐



NORMAL OPERATIONS (I)

leader 𝑙

follow
ers

client 𝑐 

𝑚=⟨REQUEST⟩𝑐

⟨⟨PRE-PREPARE, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑙, 𝑚⟩



ACCEPTING PRE-PREPARES

The leader sends ⟨⟨PRE-PREPARE, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑙, 𝑚⟩ to the followers. 

• 𝑣 is the view number. 

• 𝑛 is the sequence number assigned by the leader. 

• 𝐷(𝑚) is a digest of the message (to reduce amount of public key crypto). 

A follower accepts the PRE-PREPARE if: 

• The client request is valid. 

• The follower is in view 𝑣. 

• The follower hasn't accepted a different PRE-PREPARE for the same sequence number in 
the same view. 

• The sequence number isn't too far ahead (to prevent sequence numbers from getting 
unnecessarily large).
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PREPARE CERTIFICATES

• Once followers accept the PRE-PREPARE, they broadcast (signed) PREPARE 
messages. 

• Once a server has received 2𝑓 matching PREPAREs and the associated PRE-
PREPARE, it has a Prepare Certificate. 

• Because quorums intersect at at least one honest server, and honest servers 
don't prepare different commands in the same slot, no two prepare certificates 
ever exist for the same view and same sequence number and different commands. 

• However, a single server having a prepare certificate is not enough. What 
about view changes? The new leader might not get the Prepare Certificate, 
might not have enough information to pick the correct command in the new 
view.
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COMMIT CERTIFICATES

• Once a server has a Prepare Certificate, it broadcasts a COMMIT 
message. 

• Once a server has 2𝑓+1 matching COMMITs (and the associated client 
message), it has a Commit Certificate. 

• A commit certificate proves that every quorum of 2𝑓+1 servers has at 
least one non-faulty node with a Prepare Certificate. This command is 
now stable and will be fixed in the same slot future view changes. 

• The server can then execute the command (provided it executed all 
previous commands) and reply to the client.
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NORMAL OPERATIONS (IV)

leader

follow
ers

client 𝑐 

⟨REPLY, 𝑣, 𝑛, 𝐷(𝑚)⟩𝑝

Client waits for 𝑓+1 
matching replies, implying at 
least one correct server has 

a Commit Certificate.

PRE-PREPARE PREPARE COMMIT REPLY
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• Followers monitor the leader. If the leader stops responding to pings or 
does anything shady, they start a view change.

• First, the follower sends ⟨VIEW-CHANGE, 𝑣+1, 𝒫⟩𝑝 to the leader of view 

𝑣+1 and ⟨VIEW-CHANGE, 𝑣+1⟩𝑝 to the other followers. The follower stops 
accepting messages for the old view.

- 𝒫 is the set of all Prepare Certificates (or Commit Certificates) the 
follower has received.

• Other followers join in the view change when they receive 𝑓+1 VIEW-
CHANGE messages.
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STARTING A NEW VIEW

Once the new leader receives 2𝑓 VIEW-CHANGE messages from the other servers, it 

broadcasts ⟨NEW-VIEW, 𝑣+1, 𝒱, 𝒪⟩𝑝

• 𝒱 is the set of VIEW-CHANGE messages it received.

•  𝒪 is a set of PRE-PREPARES in the new view, one for every sequence number less 
than or equal to the largest sequence number seen in a Prepare Certificate in a 
VIEW-CHANGE message. If there is a Prepare Certificate for that sequence number, 
the PRE-PREPARE is for that command. Otherwise, the leader pre-prepares a no-op.

Followers can independently verify that the view was started correctly from the set 𝒱. 

If everything checks out, they start the new view and process the PRE-PREPARES in 𝒪 
as normal.
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GARBAGE COLLECTION

• In the normal case, servers save their log of 
commands and all of the messages they receive. 

• In the non-Byzantine case, servers can periodically 
compact their logs. They can bring out-of-date 
servers back up-to-date with a state transfer. 

• In the Byzantine case, a server can't just accept a 
state transfer from another node. It needs proof. 



GARBAGE COLLECTION (II)

• Servers periodically decide to take a checkpoint. 

• Each server hashes the state of its state machine and broadcasts 
⟨CHECKPOINT, 𝑛, 𝐷(𝑆)⟩𝑝 , where 𝑛 is the sequence number of the 

last executed command and 𝐷(𝑆) is a hash of the state. 

• Once a server has 𝑓+1 CHECKPOINT messages, it can compact its 
log and discard old protocol messages. These messages serve as 
a Checkpoint Certificate, proving the validity of the state.



BUT WHAT DID THAT BUY US?



BUT WHAT DID THAT BUY US?

• Before, we could only tolerate crash failures. 

• PBFT tolerates any failures, as long as only less 
than a third of the servers are faulty. (What 
happens if more are faulty?) 

• However, as far as I know, PBFT and friends 
haven't seen wide adoption.



PERFORMANCE

• Extra round of communication 
adds latency. (Can be avoided 
with speculative execution.) 

• Committing a single operation 

requires 𝑂(𝑛2) messages. (This 
can be improved, though at the 
cost of added latency.) 

• Cryptography operations are 
slow! (Though the paper 
describes some strategies to 
speed them up using MACs.)
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HOW TO USE BFT?

In order to use BFT, we need to have some reason to 
believe that the number of Byzantine failures is going to 
be limited, or at least that the failures will be 
independent and separated in time. 

This probably holds true for hardware failures. 

What about security flaws and software bugs? 

One possible solution: 𝑛-version programming


