
Caches & Memcache

Example

System
+

Caches

Client

Client

Client
N. America

Asia

Africa

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Assume that clients use a sharded key-value store to
coordinate their output

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Write buffering: Can we start to write done1 before we
finish write to k1?

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Write buffering: Can we start to write done1 before we
finish write to k1?

No, if sharded and want linearizability: must serialize
writes

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

What if caches can hold out of date data?

What might go wrong?

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

Asia: done1 = true, cached (old) k1

Africa: done2 = true, cached (old) k1 and k2

Africa: done2 = true, k2 correct, cached k1 (!)

Rules for caches and shards

Correct execution if:

1. Operations applied in processor order, and

2. All operations to a single key are serialized (as if
to a single copy)

How do we ensure #2?

- Can serialize each memory location in isolation

Invalidations vs. Leases

Invalidations

- Track where data is cached

- When doing a write, invalidate all (other) locations

- Data can live in multiple caches during reads

Leases

- Permission to serve data for some time period

- Wait until lease expires before update

Write-through vs. write-back

Write-through

- Writes go to the server

- Caches only hold clean data

Write-back

- Writes go to cache

- Dirty cache data written to server when necessary

Write-through vs. write-back

Mechanism

Write policy
Invalidations Leases

Write-through AFS
(Andrew FS) DNS

Write-back Sprite NFS

Write-through invalidations
Track all caches with read copies

On a write:

- Send invalidations to all caches with a copy

- Each cache invalidates, responds

- Wait for all invalidations, do update

- Return

Reads can proceed:

- If there is a cached copy

- or if cache miss, read at server

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

k1 = 0
k2 = 0
done1 = false
done2 = false

Server

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

k1 = 0
k2 = 0
done1 = false
done2 = false

Server

read miss: done1

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia
Server

done1: false

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia
Server

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia
Server

read miss: done2

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia
done2: Africa

Server

done2: false

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false
done2 = false

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia
done2: Africa

Server

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false
done2 = false

k1 = 0
k2 = 0
done1 = false
done2 = false

done1: Asia
done2: Africa

Server

k1: 42

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false
done2 = false

k1 = 42
k2 = 0
done1 = false
done2 = false

done1: Asia
done2: Africa

Server

ack

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false
done2 = false

k1 = 42
k2 = 0
done1 = false
done2 = false

done1: Asia
done2: Africa

Server

done1: true

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false
done2 = false

k1 = 42
k2 = 0
done1 = false
done2 = false

done1: Asia
done2: Africa

Server

invalidate: done1

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false
done2 = false

k1 = 42
k2 = 0
done1 = true
done2 = false

done1: Asia
done2: Africa

Server

ack

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = false
done2 = false

k1 = 42
k2 = 0
done1 = true
done2 = false

done1:
done2: Africa

Server

ack

ClientClientClient

put (k1, f(data))
put (done1, true)

while(get(done1) == false)
 ;
put (k2, g(get(k1));
put (done2, true)

while(get(done2) == false)
 ;
rslt = h(get(k1), get(k2))

done1 = true
done2 = false

k1 = 42
k2 = 0
done1 = true
done2 = false

done1: Asia
done2: Africa

Server

Questions

While a write to key k is waiting on invalidations, can
other clients read old values of k from their caches?

Questions

While a write to key k from client C is waiting on
invalidations, can C perform another write to a different
key m?

Questions

While a write to key k from client C is waiting on
invalidations, can the server perform a read from a
different client D to a different key m?

Questions

While a write to key k from client C is waiting on
invalidations, can the server perform a read to k from a
different client D?

Questions

While a write to key k from client C is waiting on
invalidations, can the server perform a write from client D
to the same key?

Facebook’s	Memcache	Service

Facebook’s	Scaling	Problem

• Rapidly	increasing	user	base	
– Small	initial	user	base	

– 2x	every	9	months	

– 2013:	1B	users	globally	

• Users	read/update	many	times	per	day	
– Increasingly	intensive	app	logic	per	user	
– 2x	I/O	every	4-6	months	

• Infrastructure	has	to	keep	pace

Scaling	Strategy

Adapt	off	the	shelf	components	where	possible	

Fix	as	you	go	
– no	overarching	plan	

Rule	of	thumb:	Every	order	of	magnitude	requires	
a	rethink

Facebook	Three	Layer	Architecture

• Application	front	end	
– Stateless,	rapidly	changing	program	logic	
– If	app	server	fails,	redirect	client	to	new	app	server	

• Memcache	
– Lookaside	key-value	cache	
– Keys	defined	by	app	logic	(can	be	computed	results)	

• Fault	tolerant	storage	backend	
– Stateful	
– Careful	engineering	to	provide	safety	and	performance	
– Both	SQL	and	NoSQL

Workload

Each	user’s	page	is	unique	
– draws	on	events	posted	by	other	users	

Users	not	in	cliques	
– For	the	most	part	

User	popularity	is	zipf	
– Some	user	posts	affect	very	large	#’s	of	other	pages	

– Most	affect	a	much	smaller	number

Scale	By	Caching:	Memcache

Sharded	in-memory	key-value	cache	
– Key,	values	assigned	by	application	code	

– Values	can	be	data,	result	of	computation	

– Independent	of	backend	storage	architecture	(SQL,	
noSQL)	or	format	

– Design	for	high	volume,	low	latency	

Lookaside	architecture

Lookaside	Read

Cache

Web Server

SQL

get k (1)

data

Lookaside	Read

Cache

Web Server

SQL

get k (1)

nope!get k (2) data

Lookaside	Read

Cache

Web Server

SQL

put k (3)

ok!get k (2) data

Lookaside	Operation	(Read)

• Webserver	needs	key	value	

• Webserver	requests	from	memcache	

• Memcache:	If	in	cache,	return	it	

• If	not	in	cache:		
– Return	error	
–Webserver	gets	data	from	storage	server	

– Possibly	an	SQL	query	or	complex	computation	

–Webserver	stores	result	back	into	memcache

Question

What	if	swarm	of	users	read	same	key	at	the	same	
time?

Lookaside	Write

Cache

Web Server

SQL

delete k (2)

ok!
update

(1) ok!

Lookaside	Operation	(Write)

• Webserver	changes	a	value	that	would	invalidate	
a	memcache	entry	
– Could	be	an	update	to	a	key	
– Could	be	an	update	to	a	value	used	to	derive	some	key	
value	

• Client	puts	new	data	on	storage	server	

• Client	invalidates	entry	in	memcache

Why	Not	Delete	then	Update?

Cache

Web Server

SQL

delete k (1)

ok!
update

(2) ok!

Why	Not	Delete	then	Update?

Cache

Web Server

SQL

delete k (1)

ok!
update

(2) ok!

Read miss might
reload data before

it is updated.

Memcache	Consistency

Is	memcache	linearizable?

Example

Webserver:	Reader	

Read	cache	

If	missing,	

		Fetch	from	database	

		Store	back	to	cache

Webserver:	Writer	

Change	database	

Delete	cache	entry

Interleave	any	#	of	readers/writers	

Example

Webserver:	Reader	

Read	cache

Webserver:	Writer	

Change	database	

Delete	cache	entry

Memcache	Consistency

Is	the	lookaside	protocol	eventually	consistent?

Example

• Read	cache	

• Read	database	

• Store	back	to	cache

• change	database	

• Delete	entry

Lookaside	With	Leases

Goals:	
– Reduce	(eliminate?)	per-key	inconsistencies	
– Reduce	cache	miss	swarms	

On	a	read	miss:	
– leave	a	marker	in	the	cache	(fetch	in	progress)	
– return	timestamp	
– check	timestamp	when	filling	the	cache	
– if	changed	means	value	has	(likely)	changed:	don't	overwrite	

If	another	thread	read	misses:	
– find	marker	and	wait	for	update	(retry	later)

Question

What	if	web	server	crashes	while	holding	lease?		

Question

Is	lookaside	with	leases	linearizable?

Example

Webserver:	Reader	

Read	cache

Webserver:	Writer	

Change	database	

Delete	cache	entry

Question

Is	lookaside	with	leases	eventually	consistent?

Example

Webserver:	Reader	

Read	cache

Webserver:	Writer	

Change	database	

CRASH!		

(before	Delete	cache	entry)

Question

Would	this	be	made	“more	correct”?	
– read	misses	obtain	lease	

– writes	obtain	lease	(prevent	reads	during	update)	

Except	that		
– FB	replicates	popular	keys	(need	lease	on	every	copy?)	

– memcache	server	might	fail,	or	appear	to	fail	by	being	
slow	(e.g.,	to	some	nodes,	but	not	others)

Latency	Optimizations

Concurrent	lookups	
– Issue	many	lookups	concurrently	

– Prioritize	those	that	have	chained	dependencies	

Batching	
– Batch	multiple	requests	(e.g.,	for	different	end	users)	

to	the	same	memcache	server	

Incast	control:		
– Limit	concurrency	to	avoid	collisions	among	RPC	

responses

More	Optimizations

Return	stale	data	to	web	server	if	lease	is	held	
– No	guarantee	that	concurrent	requests	returning	stale	

data	will	be	consistent	with	each	other	

Partitioned	memory	pools	
– Infrequently	accessed,	expensive	to	recompute	
– Frequently	accessed,	cheap	to	recompute	
– If	mixed,	frequent	accesses	will	evict	all	others	

Replicate	keys	if	access	rate	is	too	high	
– Implication	for	consistency?	

Gutter	Cache

When	a	memcache	server	fails,	flood	of	requests	
to	fetch	data	from	storage	layer	
– Slows	users	needing	any	key	on	failed	server	
– Slows	other	users	due	to	storage	server	contention	

Solution:	backup	(gutter)	cache	
– Time-to-live	invalidation	(ok	if	clients	disagree	as	to	

whether	memcache	server	is	still	alive)	
– TTL	is	eventually	consistent

