
Data	Centers	&		
Co-designed	Distributed	Systems



A	Data	Center



Inside	a	Data	Center



Data	center

10k	-	100k	servers:	250k	–	10M	cores	

1-100PB	of	DRAM	

100PB	-	10EB	storage	

1-	10	Pbps	bandwidth	(>>	Internet)	

10-100MW	power	
-	1-2%	of	global	energy	consumption	

100s	of	millions	of	dollars



Servers

Limits	driven	by	the	power	consumption	

1-4	multicore	sockets		

20-24	cores/socket	(150W	each)	

100s	GB	–	1	TB	of	DRAM	(100-500W)	

40Gbps	link	to	network	switch



Servers	in	racks

19”	wide	

1.75”	tall	(1u)	

(defined	decades	back!)	

40-120	servers/rack	

network	switch	at	top



Racks	in	rows



Rows	in	hot/cold	pairs



Hot/cold	pairs	in	data	centers



Where	is	the	cloud?

Amazon,	in	the	US:	
-	Northern	Virginia	

-	Ohio	

-	Oregon	

-	Northern	California	

Many	reasons	informing	the	locations.



MTTF/MTTR

Mean	Time	to	Failure/Mean	Time	to	Repair	

Disk	failures	(not	reboots)	per	year	~	2-4%	
– At	data	center	scale,	that’s	about	2/hour.	
– It	takes	10	hours	to	restore	a	10TB	disk	

Server	crashes	
– 1/month	*	30	seconds	to	reboot	=>	5	mins/year	
– 100K+	servers



Data	Center	Networks

Every	server	wired	to	a	
ToR	(top	of	rack)	switch	

ToR’s	in	neighboring	
aisles	wired	to	an	
aggregation	switch	

Agg.	switches	wired	to	
core	switches



Early	data	center	networks

3	layers	of	switches	
-	Edge	(ToR)	

-	Aggregation	

-	Core



Early	data	center	networks

3	layers	of	switches	
-	Edge	(ToR)	

-	Aggregation	

-	Core
Optical

Electrical



Early	data	center	limitations

Cost	
-	Core,	aggregation	routers	=	high	capacity,	low	volume	

-	Expensive!	

Fault-tolerance	
-	Failure	of	a	single	core	or	aggregation	router	=	large	

bandwidth	loss	

Bisection	bandwidth	limited	by	capacity	of	
largest	available	router	

-	Google’s	DC	traffic	doubles	every	year!



Clos	networks

How	can	I	replace	a	big	switch	by	many	small	
switches?

Big	switch
Small	
switch



Clos	networks

How	can	I	replace	a	big	switch	by	many	small	
switches?

Big	switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch



Clos	Networks

What	about	bigger	switches?



Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch



Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch

Small	
switch



Multi-rooted	tree

Every	pair	of	nodes	has	many	paths	

Fault	tolerant!	But	how	do	we	pick	a	path?



Multipath	routing

Lots	of	bandwidth,	split	across	many	paths	

ECMP:	hash	on	packet	header	to	determine	route	

	 -	(5	tuple):	Source	IP,	port,	destination	IP,	port,	prot.	

	 -	Packets	from	client	–	server	usually	take	same	route	

On	switch	or	link	failure,	ECMP	sends	subsequent	
packets	along	a	different	route	

=>	Out	of	order	packets!



Data	Center	Network	Trends

RT	latency	across	data	center	~	10	usec	
40	Gbps	links	common,	100	Gbps	on	the	way	
– 1KB	packet	every	80ns	on	a	100Gbps	link	
– Direct	delivery	into	the	on-chip	cache	(DDIO)	

Upper	levels	of	tree	are	(expensive)	optical	links	
– Thin	tree	to	reduce	costs	

Within	rack	>	within	aisle	>	within	DC	>	cross	DC	
– Latency	and	bandwidth:	keep	communication	local



Local	Storage

• Magnetic	disks	for	long	term	storage	
– High	latency	(10ms),	low	bandwidth	(250MB/s)	
– Compressed	and	replicated	for	cost,	resilience	

• Solid	state	storage	for	persistence,	cache	layer	
– 50us	block	access,	multi-GB/s	bandwidth	

• Emerging	NVM	
– Low	energy	DRAM	replacement	
– Sub-microsecond	persistence



Co-designing Systems inside the 
Datacenter



?
?

?

Network	is	minimalistic

best effort delivery 

simple primitives
 
minimal guarantees



Distributed	Systems	assume	the	worst

?
?

?

packets may be 
arbitrarily

• dropped

• delayed

• reordered

asynchronous network!



Data	Center	Networks

• DC	Networks	can	exhibit	stronger	
properties:	

– controlled	by	single	entity	
– trusted,	extensible	
– predictable,	low	latency



Research	Questions

– Can	we	build	an	approximately	synchronous	
network?	

– Can	we	co-design	networks	and	distributed	
systems?



Paxos

• Paxos	typically	uses	a	leader	to	order	requests	
• Client	request	sent	to	the	leader

Client

Node 1
(leader)

Node 2

Node 3

request



Paxos

• Leader	sequences	operations;	sends	to	replicas

Client

Node 1
(leader)

Node 2

Node 3

request prepare



Paxos

• Replicas	respond;	leader	waits	for	f+1	replies

Client

Node 1
(leader)

Node 2

Node 3

request prepare prepareok



Paxos

• Leader	executes;	replies	to	client;	commits	to	nodes

Client

Node 1
(leader)

Node 2

Node 3

request prepare prepareok
reply,

commit

exec()

exec()

exec()



Performance	Analysis

• End-to-end	latency:	4	messages	
• Leader	load:	2n	messages	

• Leader	sequencing	increases	latency	and	
reduces	throughput



• Can	we	design	a	“leader-less”	system?	

• Can	the	network	provide	stronger	delivery	
properties?



Mostly	Ordered	Multicasts

• Best-effort	ordering	of	concurrent	multicasts	
• Given	two	concurrent	multicasts	m1	and	m2	

If	a	node	receives	m1	and	m2,	then	all	other	
nodes	will	process	them	in	the	same	order	
with	high	probability	

• More	practical	than	totally	ordered	multicasts;	
but	not	satisfied	by	existing	multicast	protocols



Traditional	Network	Multicast

Consider	a	symmetric	DC	network	with	three	replica	nodes

N1 N2 N3

S1 S2 S3

S4 S5



Traditional	Network	Multicast

Let	two	clients	issue	concurrent	multicasts	

N1 N2 N3

S1 S2 S3

S4 S5

C1 C2



Traditional	Network	Multicast

Multicast	messages	travel	different	path	lengths

N1 N2 N3

S1 S2 S3

S4 S5

C1 C2



Traditional	Network	Multicast

N1	is	closer	to	C1	while	N3	is	closer	to	C2	
Different	multicasts	traverse	links	with	different	loads

N1 N2 N3

S1 S2 S3

S4 S5

C1 C2



Traditional	Network	Multicast

N1 N2 N3

S1 S2 S3

S4 S5

C1 C2

Simultaneous	multicasts	will	be	received	in	
arbitrary	order	by	replica	nodes



Mostly	Ordered	Multicast

• Ensure	that	all	multicast	messages	traverse	the	
same	number	of	links	

• Minimize	reordering	due	to	congestion	induced	
delays



Mostly	Ordered	Multicast

Step	1:	Route	multicast	messages	always	through	a	root	
switch	equidistant	from	receivers

N1 N2 N3

S1 S2 S3

S4 S5

C1 C2



Mostly	Ordered	Multicast

N1 N2 N3

S1 S2 S3

S4 S5

C1 C2

Step	2:	Perform	in-network	replication	at	the	root	switch	or	on	the	
downward	path



Mostly	Ordered	Multicast

N1 N2 N3

S1 S2 S3

S4 S5

C1 C2

Step 3: Use the same root switch if possible (especially when 
there are multiple multicast groups)



Mostly	Ordered	Multicast

N1 N2 N3

S1 S2 S3

S4 S5

C1 C2

Step	4:	Enable	QoS	prioritization	on	multicast	messages	on	the	
downward	path;	queueing	delay	at	most	one	message/switch



MOM	Implementation

• Easily	implemented	using	OpenFlow/SDN	
• Multicast	groups	represented	using	virtual	IPs	
• Routing	based	on	both	the	destination	and	the	
direction	of	traffic	flow



Speculative	Paxos

• New	consensus	protocol	that	relies	on	MOMs	
• Leader-less	protocol	in	the	common	case	
• Leverages	approximate	synchrony:	
– If	no	reordering,	leader	is	avoided	
– If	there	is	reordering,	leader-based	reconciliation	
– Always	safe,	but	more	efficient	with	ordered	
multicasts



• Client	sends	request	through	a	MOM	to	all	nodes

Client

Node 1

Node 2

Node 3

request

Speculative Paxos



• Nodes	speculatively	execute	assuming	correct	order

Client

Node 1

Node 2

Node 3

request

specexec()

specexec()

specexec()

Speculative Paxos



• Nodes	reply	with	result	and	a	compressed	digest	of	
all	prior	commands	executed	by	each	node

Client

Node 1

Node 2

Node 3

request specreply(result, state)

specexec()

specexec()

specexec()

Speculative Paxos



• Client	checks	for	matching	responses;	operation	
committed	if	responses	match	from	3/2*f+1	nodes

Client

Node 1

Node 2

Node 3

request specreply(result, state) match?

specexec()

specexec()

specexec()

Speculative Paxos



Speculative	Execution

• Only	clients	know	immediately	as	to	whether	their	
requests	succeeded	

• Replicas	periodically	run	synchronization	protocol	to	
commit	speculative	commands	

• If	there	is	divergence,	trigger	a	reconciliation	protocol	
– leader	node	collects	speculatively	executed	commands	

– leader	decides	ordering	and	notifies	replicas	

– replicas	rollback	and	re-execute	requests	in	proper	order



Summary	of	Results

• Testbed	and	simulation	based	evaluation	
• Speculative	Paxos	outperforms	Paxos  
when	reorder	rates	are	low	
– 2.6x	higher	throughput,	40%	lower	
latency	

– effective	up	to	reorder	rates	of	0.5%


