
AVOIDING COORDINATION WITH
NETWORK ORDERING:
NOPAXOS AND ERIS

Ellis Michael

SERVER FAILURES ARE THE COMMON CASE IN
DATA CENTERS

SERVER FAILURES ARE THE COMMON CASE IN
DATA CENTERS

SERVER FAILURES ARE THE COMMON CASE IN
DATA CENTERS

SERVER FAILURES ARE THE COMMON CASE IN
DATA CENTERS

Operation A

Operation B

Operation C

Operation A

Operation B

Operation C

Operation A

Operation B

Operation C

STATE MACHINE REPLICATION

Operation A

Operation B

Operation C

Operation A

Operation B

Operation C

Operation A

Operation B

Operation C

STATE MACHINE REPLICATION

Operation A

Operation B

Operation C

Operation A

Operation B

Operation C

Operation A

Operation B

Operation C

STATE MACHINE REPLICATION

PAXOS FOR STATE MACHINE REPLICATION

Client

Leader
Replica

Replica

Replica

prepare prepareokrequest reply

PAXOS FOR STATE MACHINE REPLICATION

Client

Leader
Replica

Replica

Replica

prepare prepareokrequest reply

Throughput
Bottleneck

PAXOS FOR STATE MACHINE REPLICATION

Client

Leader
Replica

Replica

Replica

prepare prepareokrequest reply

Throughput
Bottleneck

Latency Penalty

Messages may be:
• dropped
• reordered
• delivered with arbitrary

latency

NETWORK PROPERTIES DETERMINE REPLICATION
COMPLEXITY

Asynchronous
Network

• Paxos protocol on every operation
• High performance cost

Paxos

NETWORK PROPERTIES DETERMINE REPLICATION
COMPLEXITY

Asynchronous
Network

• Paxos protocol on every operation
• High performance cost

All replicas:
• receive the same set of

messages
• receive them in the

same order

Paxos

Reliability

Ordering

NETWORK PROPERTIES DETERMINE REPLICATION
COMPLEXITY

Asynchronous
Network

• Paxos protocol on every operation
• High performance cost

• Replication is trivial

All replicas:
• receive the same set of

messages
• receive them in the

same order

Paxos

Reliability

Ordering

NETWORK PROPERTIES DETERMINE REPLICATION
COMPLEXITY

Asynchronous
Network

• Paxos protocol on every operation
• High performance cost

• Replication is trivial
• Network implementation has

the same complexity as Paxos

All replicas:
• receive the same set of

messages
• receive them in the

same order

Paxos

Reliability

Ordering

Network Guarantee
Weak Strong

Asynchronous
Network

Paxos

Ordering

Reliability

Network Guarantee
Weak Strong

Asynchronous
Network

Paxos

Ordering

Reliability

Network Guarantee
Weak Strong

Can we build a network model that:

• provides performance benefits
• can be implemented more efficiently

Asynchronous
Network

Paxos

Ordering

Reliability

SPECPAXOS ASSUMED THE NETWORK
WAS MOSTLY ORDERED  
 
WHAT IF IT COULD PROVIDE AN
ORDERING GUARANTEE?

TOWARDS AN ORDERED BUT UNRELIABLE
NETWORK

Key Idea: Separate ordering from reliable
delivery in state machine replication

Network provides ordering

Replication protocol handles reliability

OUM APPROACH

• Designate one sequencer in the network

• Sequencer maintains a counter for each OUM group

1. Forward OUM messages to the sequencer

2. Sequencer increments counter and writes counter
value into packet headers

3. Receivers use sequence numbers to detect
reordering and message drops

Ordered Unreliable
Multicast

Senders Receivers

Counter:

0

1

1

Ordered Unreliable
Multicast

Senders Receivers

Counter:
2

1

2

2

2

1

1

Ordered Unreliable
Multicast

Senders Receivers

Counter:
4

1

2

3 4

2

2

3

4

4

1

1

Ordered Unreliable
Multicast

Senders Receivers

DROP
Counter:

4

1

2

3 4

2

2

3

4

4

1

1

Ordered Unreliable
Multicast

Senders Receivers

DROP
Counter:

4

1

2

3 4

2

2

3

4

4Ordered Multicast:
no coordination required to determine order of messages

1

1

Ordered Unreliable
Multicast

Senders Receivers

DROP
Counter:

04

1

2

3 4

2

2

3

4

4Ordered Multicast:
no coordination required to determine order of messages

Drop Detection:
coordination only required when messages are dropped

SEQUENCER IMPLEMENTATIONS

In-switch
sequencing

• next generation
programmable
switches

• implemented in P4
• nearly zero cost

Middlebox
prototype

• Cavium Octeon
network processor

• connects to root
switches

• adds 8 us latency

End-host
sequencing

• no specialized
hardware required

• incurs higher latency
penalties

• similar throughput
benefits

SEQUENCER IMPLEMENTATIONS

In-switch
sequencing

• next generation
programmable
switches

• implemented in P4
• nearly zero cost

Middlebox
prototype

• Cavium Octeon
network processor

• connects to root
switches

• adds 8 us latency

End-host
sequencing

• no specialized
hardware required

• incurs higher latency
penalties

• similar throughput
benefits

SEQUENCER IMPLEMENTATIONS

In-switch
sequencing

• next generation
programmable
switches

• implemented in P4
• nearly zero cost

Middlebox
prototype

• Cavium Octeon
network processor

• connects to root
switches

• adds 8 us latency

End-host
sequencing

• no specialized
hardware required

• incurs higher latency
penalties

• similar throughput
benefits

NOPAXOS OVERVIEW

• Built on top of the guarantees of OUM

• Client requests are totally ordered but can be
dropped

• No coordination in the common case

• Replicas run agreement on drop detection

• View change protocol for leader or sequencer failure

NORMAL OPERATION

Client

Replica
(leader)

Replica

Replica

NORMAL OPERATION

Client

Replica
(leader)

Replica

Replica

OUM

request

NORMAL OPERATION

Client

Replica
(leader)

Replica

Replica

OUM

request reply

Execute

NORMAL OPERATION

Client

Replica
(leader)

Replica

Replica

OUM

request reply

Execute

waits for
replies from

majority
including
leader’s

NORMAL OPERATION

Client

Replica
(leader)

Replica

Replica

OUM

request reply

Execute

waits for
replies from

majority
including
leader’s

no
coordination

NORMAL OPERATION

Client

Replica
(leader)

Replica

Replica

OUM

request reply

Execute

waits for
replies from

majority
including
leader’s

no
coordination

1 Round Trip Time

GAP AGREEMENT

Replicas detect message drops.

• Non-leader replicas: recover the missing
message from the leader

• Leader replica: coordinates to commit a  
NO-OP (Paxos)

• Efficient recovery from network anomalies

WHY DO FOLLOWERS NOT EXECUTE?

• Request logs in NOPaxos are non-authoritative. The
followers might not be involved in the quorum to
commit a no-op. The leader might get replaced.

• Followers simply log operations. Operations are
permanently committed with periodic synchronization.

• If a leader gets replaced and discovers that some of its
commands weren't actually committed, it can roll-back
or get a state transfer.

VIEW CHANGE

• Handles leader or sequencer failure

• Ensures that all replicas are in a consistent state
and agree on all of the commands and no-ops
committed in the previous view.

• Runs a view change protocol similar to VR

• view-number is a tuple of  
<leader-number, session-number>

NOPAXOS ACHIEVES BETTER THROUGHPUT AND
LATENCY

Latency (us)

Throughput (ops/sec) better →

better ↓

0

250

500

750

1000

0 65,000 130,000 195,000 260,000

NOPAXOS ACHIEVES BETTER THROUGHPUT AND
LATENCY

Latency (us)

Throughput (ops/sec)

NOPaxosFast Paxos

Paxos

better →

better ↓

0

250

500

750

1000

0 65,000 130,000 195,000 260,000

NOPAXOS ACHIEVES BETTER THROUGHPUT AND
LATENCY

Latency (us)

Throughput (ops/sec)

NOPaxosFast Paxos

Paxos

4.7X throughput and more
than 40% reduction in

latency

better →

better ↓

Paxos + Batching

0

250

500

750

1000

0 65,000 130,000 195,000 260,000

NOPAXOS ACHIEVES BETTER THROUGHPUT AND
LATENCY

Latency (us)

Throughput (ops/sec)

NOPaxosFast Paxos

Paxos

4.7X throughput and more
than 40% reduction in

latency

better →

better ↓

Paxos + Batching

0

250

500

750

1000

0 65,000 130,000 195,000 260,000

NOPAXOS ACHIEVES BETTER THROUGHPUT AND
LATENCY

Latency (us)

Throughput (ops/sec)

NOPaxosFast Paxos

Paxos

4.7X throughput and more
than 40% reduction in

latency

25% higher throughput and 6X
lower latency

better →

better ↓

NOPAXOS IS RESILIENT TO NETWORK ANOMALIES

0

65,000

130,000

195,000

260,000

0.001% 0.01% 0.1% 1%

NOPaxos Paxos SpecPaxos

Throughput
(ops/sec)

Packet Drop Rate

NOPAXOS IS RESILIENT TO NETWORK ANOMALIES

0

65,000

130,000

195,000

260,000

0.001% 0.01% 0.1% 1%

NOPaxos Paxos SpecPaxos

Throughput
(ops/sec)

Packet Drop Rate

NOPaxos

Speculative Paxos

Paxos

NOPAXOS IS RESILIENT TO NETWORK ANOMALIES

0

65,000

130,000

195,000

260,000

0.001% 0.01% 0.1% 1%

NOPaxos Paxos SpecPaxos

Throughput
(ops/sec)

Packet Drop Rate

drops to 24%
of maximum
throughput

NOPaxos

Speculative Paxos

Paxos

NOPAXOS ATTAINS THROUGHPUT WITHIN 2% OF
AN UNREPLICATED SYSTEM

NOPAXOS ATTAINS THROUGHPUT WITHIN 2% OF
AN UNREPLICATED SYSTEM

0

125

250

375

500

0 65,000 130,000 195,000 260,000

Latency (us)

Throughput (ops/sec) better →

better ↓

NOPAXOS ATTAINS THROUGHPUT WITHIN 2% OF
AN UNREPLICATED SYSTEM

0

125

250

375

500

0 65,000 130,000 195,000 260,000

NOPaxos

Unreplicated

PaxosLatency (us)

Throughput (ops/sec) better →

better ↓

NOPAXOS ATTAINS THROUGHPUT WITHIN 2% OF
AN UNREPLICATED SYSTEM

0

125

250

375

500

0 65,000 130,000 195,000 260,000

NOPaxos

Unreplicated

Paxos

within 2% throughput and
16us latency of an unreplicated

system

Latency (us)

Throughput (ops/sec) better →

better ↓

NOPAXOS ATTAINS THROUGHPUT WITHIN 2% OF
AN UNREPLICATED SYSTEM

0

125

250

375

500

0 65,000 130,000 195,000 260,000

NOPaxos

Unreplicated

NOPaxos using
end-host sequencer

Paxos

within 2% throughput and
16us latency of an unreplicated

system

Latency (us)

Throughput (ops/sec) better →

better ↓

NOPAXOS ATTAINS THROUGHPUT WITHIN 2% OF
AN UNREPLICATED SYSTEM

0

125

250

375

500

0 65,000 130,000 195,000 260,000

NOPaxos

Unreplicated

NOPaxos using
end-host sequencer

Paxos

within 2% throughput and
16us latency of an unreplicated

system

similar throughput but 36%
higher latencyLatency (us)

Throughput (ops/sec) better →

better ↓

SUMMARY

• Separate ordering from reliable delivery in state machine
replication

• A network model OUM that provides ordered but
unreliable message delivery

• A more efficient replication protocol NOPaxos that
ensures reliable delivery

• The combined system achieves performance equivalent
to an unreplicated system

THE ERIS TRANSACTION PROTOCOL

Shard 3

Client

Shard 1

Shard 2

EXISTING TRANSACTIONAL SYSTEMS:
EXTENSIVE COORDINATION

Shard 3

Client

Shard 1

Shard 2

req prepare ok commit

EXISTING TRANSACTIONAL SYSTEMS:
EXTENSIVE COORDINATION

Shard 3

Client

Shard 1

Shard 2

req prepare ok commit

EXISTING TRANSACTIONAL SYSTEMS:
EXTENSIVE COORDINATION

Shard 3

Client

Shard 1

Shard 2

req prepare ok commit

EXISTING TRANSACTIONAL SYSTEMS:
EXTENSIVE COORDINATION

• Processes independent transactions  
without coordination in the normal case

• Performance within 3% of a nontransactional,
unreplicated system on TPC-C

• Strongly consistent, fault tolerant transactions
with minimal performance penalties

ERIS

KEY CONTRIBUTIONS

A new architecture that divides the responsibility
for transactional guarantees by

…leveraging the datacenter network to order
messages within and across shards

…and a co-designed transaction protocol  
with minimal coordination.

TRADITIONAL LAYERED APPROACH

Atomic Commitment (2PC)

Concurrency
Control (2PL)

Concurrency
Control (2PL)

Replication
(Paxos)

Replica Replica

Replica

Replication
(Paxos)

Replica Replica

Replica

TRADITIONAL LAYERED APPROACH

Atomic Commitment (2PC)

Concurrency
Control (2PL)

Concurrency
Control (2PL)

Replication
(Paxos)

Replica Replica

Replica

Replication
(Paxos)

Replica Replica

Replica

Ordering
(within shard)

Reliability
(within shard)

Isolation

TRADITIONAL LAYERED APPROACH

Atomic Commitment (2PC)

Concurrency
Control (2PL)

Concurrency
Control (2PL)

Replication
(Paxos)

Replica Replica

Replica

Replication
(Paxos)

Replica Replica

Replica

Ordering
(within shard)

Reliability
(within shard)

Ordering
(across shard)

Isolation

TRADITIONAL LAYERED APPROACH

Atomic Commitment (2PC)

Concurrency
Control (2PL)

Concurrency
Control (2PL)

Replication
(Paxos)

Replica Replica

Replica

Replication
(Paxos)

Replica Replica

Replica

Ordering
(within shard)

Reliability
(within shard)

Reliability
(across shards)

Ordering
(across shard)

Isolation

A NEW WAY TO DIVIDE RESPONSIBILITIES

Ordering
(within shard)

Reliability
(within shard)

Reliability
(across shards)

Multi-sequencing

Independent Transaction Protocol

General Transaction
Protocol

Eris

Ordering
(across shard)

Isolation

A NEW WAY TO DIVIDE RESPONSIBILITIES

Ordering
(within shard)

Reliability
(within shard)

Reliability
(across shards)

Multi-sequencing

Independent Transaction Protocol

General Transaction
Protocol

Eris

Application
Network

Client

Sequencer

GOAL

IN-NETWORK CONCURRENCY CONTROL GOALS

• Globally consistent ordering across messages
delivered to multiple destination shards

• No reliable delivery guarantee

• Recipients can detect dropped messages

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

DROP

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

DROPT1
(ABC)

T2
(AB)
T2

(AB)

T2
(AB)
T2

(AB)

T1
(ABC)
T1

(ABC)

T1
(ABC)
T1

(ABC)

T1
(ABC)
T1

(ABC)

A

B

C

Receivers

T1
(ABC)

T1
(ABC)

T2
(AB)

T2
(AB)

DROPT1
(ABC)

MULTI-SEQUENCED GROUPCAST

• Groupcast: message header specifies a set of
destination multicast groups

• Multi-sequenced groupcast: messages are
sequenced atomically across all recipient groups

• Sequencer keeps a counter for each group

• Extends OUM in NOPaxos

A0 B0 C0

A

B

C

Receivers

Sequencer

Counter: 

A0 B0 C0

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A0 B0 C0

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1 B1 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1 B1 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

A1 B1 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

A1 B1 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T2
(AB)

A1 B1 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T2
(AB)

A2 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T2
(AB)

A2 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T2
(AB)

A2
B2 T1

(ABC)

A1
B1
C1

A2 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

T2
(AB)

A2
B2

 T2
(AB)

A2
B2

T1
(ABC)

A1
B1
C1

A2 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T1
(ABC)

A1
B1
C1

A2 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T1
(ABC)

A1
B1
C1

T3
(A)

A2 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T1
(ABC)

A1
B1
C1

T3
(A)

A3 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T1
(ABC)

A1
B1
C1

T3
(A)

A3 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3 T1
(ABC)

A1
B1
C1

A3 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3T1
(ABC)

A1
B1
C1

A3 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3T1
(ABC)

A1
B1
C1

A3 B2 C1

A

B

C

Receivers

Sequencer

Counter: 

T1
(ABC)

A1
B1
C1

T1
(ABC)

A1
B1
C1

 T2
(AB)

A2
B2

T3
(A)

A3T1
(ABC)

A1
B1
C1

DROP

WHAT HAVE WE ACCOMPLISHED SO FAR?

• Consistently ordered groupcast primitive with  
drop detection

• How do we go from multi-sequenced groupcast
to transactions?

TRANSACTION MODEL

Eris supports two types of transactions

• Independent transactions:

✤ One-shot (stored procedures)

✤ No cross-shard dependencies

✤ Proposed by H-Store [VLDB ’07] and Granola [ATC ’12]

• Fully general transactions

INDEPENDENT TRANSACTION

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

INDEPENDENT TRANSACTION

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

INDEPENDENT TRANSACTION

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

INDEPENDENT TRANSACTION

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE 500 < (SELECT AVG(t2.Salary) FROM tb t2)

COMMIT

INDEPENDENT TRANSACTION

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE 500 < (SELECT AVG(t2.Salary) FROM tb t2)

COMMIT

Not
 In

dep
end

ent
!

INDEPENDENT TRANSACTION

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

INDEPENDENT TRANSACTION

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

START TRANSACTION 
UPDATE tb t1

SET t1.Salary = t1.Salary + 100
WHERE t1.Salary < 500

COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

Many applications consist entirely of
independent transactions

WHY INDEPENDENT TRANSACTIONS?

• No coordination/communication across shards

• Executing them serially at each shard in a
consistent order guarantees serializability

• Multi-sequenced groupcast establishes such an
order

• How to handle message drops and sequencer/
server failures?

Shard 3

Client

Shard 1

Shard 2

Sequencer

NORMAL CASE

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

NORMAL CASE

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

NORMAL CASE

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

NORMAL CASE

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

NORMAL CASE

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

1 round trip

NORMAL CASE

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

Shard 3

Client

Shard 1

Shard 2

Sequencer

1 round trip

no
coordination

NORMAL CASE

Learner

Learner

Learner

Replica

Replica

Replica

Replica

Replica

Replica

HOW TO HANDLE DROPPED MESSAGES?
A

B

C

DROP

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1
T3
(A)

A3

HOW TO HANDLE DROPPED MESSAGES?
A

B

C
T1

(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1
T3
(A)

A3

HOW TO HANDLE DROPPED MESSAGES?
A

B

C
T1

(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

 T2
(AB)

A2
B2

T3
(A)

A3

HOW TO HANDLE DROPPED MESSAGES?
A

B

C
T1

(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

 T2
(AB)

A2
B2

T3
(A)

A3

HOW TO HANDLE DROPPED MESSAGES?
A

B

C
T1

(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

 T2
(AB)

A2
B2

T3
(A)

A3

HOW TO HANDLE DROPPED MESSAGES?
A

B

C
T1

(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

 T2
(AB)

A2
B2

T3
(A)

A3

Global coordination problem

THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T2
(AB)

A2
B2

THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Received A2?
T1

(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T2
(AB)

A2
B2

THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Received A2?Received A2?

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T2
(AB)

A2
B2

THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Received A2?

Received A2?

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T2
(AB)

A2
B2

THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Not Found

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T2
(AB)

A2
B2

T2
(AB)

A2
B2

THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Not Found

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T2
(AB)

A2
B2

T2
(AB)

A2
B2

THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3
T2

(AB)

A2
B2

T2
(AB)

A2
B2

THE FAILURE COORDINATOR

A

B

C

Failure
Coordinator

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3T2
(AB)

A2
B2

T2
(AB)

A2
B2

THE FAILURE COORDINATOR

A

B

C

DROP

Received A2?

Received A2?

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T1
(ABC)

A
1

B1

Failure
Coordinator

THE FAILURE COORDINATOR

A

B

C

DROP

Not Found

Not Found

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T1
(ABC)

A
1

B1

Failure
Coordinator

THE FAILURE COORDINATOR

A

B

C

DROP

Not Found

Not Found

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T1
(ABC)

A
1

B1

Failure
Coordinator

THE FAILURE COORDINATOR

A

B

C

DROP

Drop A2

Drop A2

Drop A2

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T1
(ABC)

A
1

B1

Failure
Coordinator

THE FAILURE COORDINATOR

A

B

C

Drop A2

Drop A2

Drop A2

NO
OP

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T1
(ABC)

A
1

B1

Failure
Coordinator

THE FAILURE COORDINATOR

A

B

C

Drop A2

Drop A2

Drop A2

NO
OP

Drops: A2

Drops: A2

T1
(ABC)

A
1

B1

T1
(ABC)

A
1

B1

T3
(A)

A3

T1
(ABC)

A
1

B1

Failure
Coordinator

DESIGNATED LEARNER AND SEQUENCER
FAILURES

Designated learner (DL) failure:

• View change based protocol

• Ensures new DL learns all committed transactions from previous
views

Sequencer failure:

• Higher epoch number from the new sequencer

• Epoch change ensures all replicas across all shards start the new epoch
in consistent states. They should all agree on the exact set of
transactions completed in the previous epoch.

CAN WE PROCESS NON-INDEPENDENT
TRANSACTIONS EFFICIENTLY?

APPROACH: DIVIDE INTO INDEPENDENT
TRANSACTIONS

• Relies on the linearizable execution of independent transactions

• This means that we have the abstraction of a single, correct
machine that processes independent transactions only.

• Uses locks to provide strong isolation

• Two phases:

✤ Independent transaction 1: execute reads and acquire locks

✤ Independent transaction 2: commit/abort changes and release
locks

BENEFITS OF OUR LAYERED ARCHITECTURE

• Simple solution to handle client failures: if the client fails, any
server can unilaterally send the abort command for its
general transactions as an independent transaction.

• No deadlocks/deadlock detection. Locks are acquired in a
single step.

• Furthermore, we don't even need aborts! Wait queues are easy.

• Takes advantage of the efficient independent transaction
processing layer. General transactions are processed in two
round trips in the normal case.

EVALUATION COMPARISON SYSTEMS

• Lock-Store (2PC + 2PL + Paxos)

• TAPIR [SOSP ’15]

• Granola [ATC ‘12]

• Non-transactional, unreplicated (NT-UR)

ERIS PERFORMS WELL ON INDEPENDENT
TRANSACTIONS

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed independent
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

ERIS PERFORMS WELL ON INDEPENDENT
TRANSACTIONS

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed independent
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris outperforms  
Lock-Store, TAPIR and

Granola by more than 3X

ERIS PERFORMS WELL ON INDEPENDENT
TRANSACTIONS

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed independent
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris achieves
throughput within

10% of NT-UR

Eris outperforms  
Lock-Store, TAPIR and

Granola by more than 3X

ERIS PERFORMS WELL ON INDEPENDENT
TRANSACTIONS

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed independent
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Eris achieves
throughput within

10% of NT-UR

Eris outperforms  
Lock-Store, TAPIR and

Granola by more than 3X

More than 70% reduction in latency compared to Lock-Store,
and within 10% latency of NT-UR

ERIS ALSO PERFORMS WELL ON GENERAL
TRANSACTIONS

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed general
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

ERIS ALSO PERFORMS WELL ON GENERAL
TRANSACTIONS

Lock-Store TAPIR Granola Eris NT-UR
0K

300K

600K

900K

1,200K

Distributed general
transactions

Th
ro

ug
hp

ut
 (t

xn
s/

se
c) Eris maintains

throughput within 10%
of NT-UR

0K

60K

120K

180K

240K

Lock-Store TAPIR Granola Eris NT-UR

TPC-C benchmark

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

ERIS EXCELS AT COMPLEX TRANSACTIONAL
APPLICATIONS

0K

60K

120K

180K

240K

Lock-Store TAPIR Granola Eris NT-UR

TPC-C benchmark

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

ERIS EXCELS AT COMPLEX TRANSACTIONAL
APPLICATIONS

7.6X and 6.4X higher
throughput than

Lock-Store and Tapir

0K

60K

120K

180K

240K

Lock-Store TAPIR Granola Eris NT-UR

TPC-C benchmark

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

ERIS EXCELS AT COMPLEX TRANSACTIONAL
APPLICATIONS

7.6X and 6.4X higher
throughput than

Lock-Store and Tapir

within 3% throughput of
NT-UR

ERIS IS RESILIENT TO NETWORK ANOMALIES

0K

450K

900K

1,350K

1,800K

0.01% 0.1% 1% 10%

Eris Lock-Store TAPIR
Granola NT-UR

Packet Drop Rate

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

ERIS IS RESILIENT TO NETWORK ANOMALIES

0K

450K

900K

1,350K

1,800K

0.01% 0.1% 1% 10%

Eris Lock-Store TAPIR
Granola NT-UR

Packet Drop Rate

TAPIR
Lock-Store

Eris

Granola

NT-UR
Th

ro
ug

hp
ut

 (t
xn

s/
se

c)

ERIS RECAP

• A new division of responsibility for transaction processing

✤ An in-network concurrency control mechanism that establishes a
consistent order of transactions across shards

✤ An efficient protocol that ensures reliable delivery of
independent transactions

✤ A general transaction layer atop independent transaction
processing

• Result: strongly consistent, fault-tolerant transactions with
minimal performance overhead

ERIS AND NOPAXOS DISCUSSION

• Can we use an end-host sequencer for Eris? In
NOPaxos, it's not a problem.

• What properties are important to NOPaxos's
"scalability"?

• How deployable are these approaches?

• How scalable is Eris compared to two-phase
commit?

