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Network Guarantee
Weak Strong

Can we build a network model that:

• provides performance benefits
• can be implemented more efficiently
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SPECPAXOS ASSUMED THE NETWORK 
WAS MOSTLY ORDERED  
 
WHAT IF IT COULD PROVIDE AN 
ORDERING GUARANTEE?



TOWARDS AN ORDERED BUT UNRELIABLE 
NETWORK

Key Idea: Separate ordering from reliable 
delivery in state machine replication 

Network provides ordering 

Replication protocol handles reliability



OUM APPROACH

• Designate one sequencer in the network 

• Sequencer maintains a counter for each OUM group 

1. Forward OUM messages to the sequencer 

2. Sequencer increments counter and writes counter 
value into packet headers 

3. Receivers use sequence numbers to detect 
reordering and message drops
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NOPAXOS OVERVIEW

• Built on top of the guarantees of OUM 

• Client requests are totally ordered but can be 
dropped 

• No coordination in the common case 

• Replicas run agreement on drop detection 

• View change protocol for leader or sequencer failure
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GAP AGREEMENT

Replicas detect message drops. 

• Non-leader replicas: recover the missing 
message from the leader 

• Leader replica: coordinates to commit a  
NO-OP (Paxos) 

• Efficient recovery from network anomalies 



WHY DO FOLLOWERS NOT EXECUTE?

• Request logs in NOPaxos are non-authoritative. The 
followers might not be involved in the quorum to 
commit a no-op. The leader might get replaced. 

• Followers simply log operations. Operations are 
permanently committed with periodic synchronization. 

• If a leader gets replaced and discovers that some of its 
commands weren't actually committed, it can roll-back 
or get a state transfer.



VIEW CHANGE

• Handles leader or sequencer failure 

• Ensures that all replicas are in a consistent state 
and agree on all of the commands and no-ops 
committed in the previous view. 

• Runs a view change protocol similar to VR 

• view-number is a tuple of  
<leader-number, session-number>
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SUMMARY

• Separate ordering from reliable delivery in state machine 
replication 

• A network model OUM that provides ordered but 
unreliable message delivery 

• A more efficient replication protocol NOPaxos that 
ensures reliable delivery 

• The combined system achieves performance equivalent 
to an unreplicated system



THE ERIS TRANSACTION PROTOCOL
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• Processes independent transactions  
without coordination in the normal case 

• Performance within 3% of a nontransactional, 
unreplicated system on TPC-C 

• Strongly consistent, fault tolerant transactions 
with minimal performance penalties

ERIS



KEY CONTRIBUTIONS

A new architecture that divides the responsibility 
for transactional guarantees by 

…leveraging the datacenter network to order 
messages within and across shards 

…and a co-designed transaction protocol  
with minimal coordination.



TRADITIONAL LAYERED APPROACH

Atomic Commitment (2PC)

Concurrency 
Control (2PL)

Concurrency 
Control (2PL)

Replication 
(Paxos)

Replica Replica

Replica

Replication 
(Paxos)

Replica Replica

Replica



TRADITIONAL LAYERED APPROACH

Atomic Commitment (2PC)

Concurrency 
Control (2PL)

Concurrency 
Control (2PL)

Replication 
(Paxos)

Replica Replica

Replica

Replication 
(Paxos)

Replica Replica

Replica

Ordering 
(within shard)

Reliability 
(within shard)



Isolation

TRADITIONAL LAYERED APPROACH

Atomic Commitment (2PC)

Concurrency 
Control (2PL)

Concurrency 
Control (2PL)

Replication 
(Paxos)

Replica Replica

Replica

Replication 
(Paxos)

Replica Replica

Replica

Ordering 
(within shard)

Reliability 
(within shard)



Ordering 
(across shard)

Isolation

TRADITIONAL LAYERED APPROACH

Atomic Commitment (2PC)

Concurrency 
Control (2PL)

Concurrency 
Control (2PL)

Replication 
(Paxos)

Replica Replica

Replica

Replication 
(Paxos)

Replica Replica

Replica

Ordering 
(within shard)

Reliability 
(within shard)

Reliability 
(across shards)



Ordering 
(across shard)

Isolation

A NEW WAY TO DIVIDE RESPONSIBILITIES

Ordering 
(within shard)

Reliability 
(within shard)

Reliability 
(across shards)

Multi-sequencing

Independent Transaction Protocol

General Transaction 
Protocol

Eris



Ordering 
(across shard)

Isolation

A NEW WAY TO DIVIDE RESPONSIBILITIES

Ordering 
(within shard)

Reliability 
(within shard)

Reliability 
(across shards)

Multi-sequencing

Independent Transaction Protocol

General Transaction 
Protocol

Eris

Application
Network



Client

Sequencer

GOAL



IN-NETWORK CONCURRENCY CONTROL GOALS

• Globally consistent ordering across messages 
delivered to multiple destination shards 

• No reliable delivery guarantee 

• Recipients can detect dropped messages
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MULTI-SEQUENCED GROUPCAST

• Groupcast: message header specifies a set of 
destination multicast groups 

• Multi-sequenced groupcast: messages are 
sequenced atomically across all recipient groups 

• Sequencer keeps a counter for each group 

• Extends OUM in NOPaxos
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WHAT HAVE WE ACCOMPLISHED SO FAR?

• Consistently ordered groupcast primitive with  
drop detection 

• How do we go from multi-sequenced groupcast 
to transactions?



TRANSACTION MODEL

Eris supports two types of transactions 

• Independent transactions: 

✤ One-shot (stored procedures) 

✤ No cross-shard dependencies 

✤ Proposed by H-Store [VLDB ’07] and Granola [ATC ’12] 

• Fully general transactions
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INDEPENDENT TRANSACTION

Name Salary
Alice 600

Name Salary
Bob 350

Name Salary
Charlie 400

START TRANSACTION 
UPDATE tb t1 

SET t1.Salary = t1.Salary + 100 
WHERE t1.Salary < 500 

COMMIT

START TRANSACTION 
UPDATE tb t1 

SET t1.Salary = t1.Salary + 100 
WHERE t1.Salary < 500 

COMMIT

START TRANSACTION 
UPDATE tb t1 

SET t1.Salary = t1.Salary + 100 
WHERE t1.Salary < 500 

COMMIT

Name Salary
Bob 450

Name Salary
Charlie 500

Many applications consist entirely of 
independent transactions



WHY INDEPENDENT TRANSACTIONS?

• No coordination/communication across shards 

• Executing them serially at each shard in a 
consistent order guarantees serializability 

• Multi-sequenced groupcast establishes such an 
order 

• How to handle message drops and sequencer/
server failures?
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THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T2
(AB)

A2 
B2



THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Received A2?
T1  

(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T2
(AB)

A2 
B2



THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Received A2?Received A2?

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T2
(AB)

A2 
B2



THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Received A2?

Received A2?

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T2
(AB)

A2 
B2



THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Not Found

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T2
(AB)

A2 
B2 

T2
(AB)

A2 
B2



THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

Not Found

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T2
(AB)

A2 
B2 

T2
(AB)

A2 
B2



THE FAILURE COORDINATOR

A

B

C

DROP

Failure
Coordinator

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3
T2

(AB)

A2 
B2 

T2
(AB)

A2 
B2



THE FAILURE COORDINATOR

A

B

C

Failure
Coordinator

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3T2
(AB)

A2
B2 

T2
(AB)

A2 
B2



THE FAILURE COORDINATOR

A

B

C

DROP

Received A2?

Received A2?

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T1  
(ABC)

A
1 

B1

Failure
Coordinator



THE FAILURE COORDINATOR

A

B

C

DROP

Not Found

Not Found

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T1  
(ABC)

A
1 

B1

Failure
Coordinator



THE FAILURE COORDINATOR

A

B

C

DROP

Not Found

Not Found

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T1  
(ABC)

A
1 

B1

Failure
Coordinator



THE FAILURE COORDINATOR

A

B

C

DROP

Drop A2

Drop A2

Drop A2

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T1  
(ABC)

A
1 

B1

Failure
Coordinator



THE FAILURE COORDINATOR

A

B

C

Drop A2

Drop A2

Drop A2

NO
OP

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T1  
(ABC)

A
1 

B1

Failure
Coordinator



THE FAILURE COORDINATOR

A

B

C

Drop A2

Drop A2

Drop A2

NO
OP

Drops: A2

Drops: A2

T1  
(ABC)

A
1

B1 

T1  
(ABC)

A
1 

B1 

T3
(A) 

A3

T1  
(ABC)

A
1 

B1

Failure
Coordinator



DESIGNATED LEARNER AND SEQUENCER 
FAILURES

Designated learner (DL) failure: 

• View change based protocol 

• Ensures new DL learns all committed transactions from previous 
views 

Sequencer failure: 

• Higher epoch number from the new sequencer 

• Epoch change ensures all replicas across all shards start the new epoch 
in consistent states. They should all agree on the exact set of 
transactions completed in the previous epoch.



CAN WE PROCESS NON-INDEPENDENT 
TRANSACTIONS EFFICIENTLY?



APPROACH: DIVIDE INTO INDEPENDENT 
TRANSACTIONS

• Relies on the linearizable execution of independent transactions 

• This means that we have the abstraction of a single, correct 
machine that processes independent transactions only. 

• Uses locks to provide strong isolation 

• Two phases: 

✤ Independent transaction 1: execute reads and acquire locks 

✤ Independent transaction 2: commit/abort changes and release 
locks



BENEFITS OF OUR LAYERED ARCHITECTURE

• Simple solution to handle client failures: if the client fails, any 
server can unilaterally send the abort command for its 
general transactions as an independent transaction. 

• No deadlocks/deadlock detection. Locks are acquired in a 
single step. 

• Furthermore, we don't even need aborts! Wait queues are easy. 

• Takes advantage of the efficient independent transaction 
processing layer. General transactions are processed in two 
round trips in the normal case.



EVALUATION COMPARISON SYSTEMS

• Lock-Store (2PC + 2PL + Paxos) 

• TAPIR [SOSP ’15] 

• Granola [ATC ‘12] 

• Non-transactional, unreplicated (NT-UR)
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More than 70% reduction in latency compared to Lock-Store, 
and within 10% latency of NT-UR
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ERIS RECAP

• A new division of responsibility for transaction processing 

✤ An in-network concurrency control mechanism that establishes a 
consistent order of transactions across shards 

✤ An efficient protocol that ensures reliable delivery of 
independent transactions 

✤ A general transaction layer atop independent transaction 
processing 

• Result: strongly consistent, fault-tolerant transactions with 
minimal performance overhead



ERIS AND NOPAXOS DISCUSSION

• Can we use an end-host sequencer for Eris? In 
NOPaxos, it's not a problem. 

• What properties are important to NOPaxos's 
"scalability"? 

• How deployable are these approaches? 

• How scalable is Eris compared to two-phase 
commit?


