
Vector Clocks &
Distributed snapshots

CS 452

Vector clocks

Precisely represent transitive causal relationships

T(A) < T(B) <-> happens-before(A, B)

Idea: track events known to each node, on each node

Used in practice for eventual and causal consistency

- git, Amazon Dynamo, …

Vector clocks

Clock is a vector C, length = # of nodes

On node i, increment C[i] on each event

On receipt of message with clock Cm on node i:

- increment C[i]

- for each j != i

- C[j] = max(C[j], Cm[j])

Example

S1 S2 S3

A (T = ?)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (T = ?)

send M (2,0,0)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (T = ?)
D (T = ?)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (T = ?)
D (0,0,1)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (T = ?)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (2,3,3)

Example

S1 S2 S3

A (1,0,0)

B (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (2,3,3)

Vector Clocks

Compare vectors element by element

Provided the vectors are not identical,

If Cx[i] < Cy[i] and Cx[j] > Cy[j] for some i, j

Cx and Cy are concurrent

if Cx[i] <= Cy[i] for all i

Cx happens before Cy

S1

S2

S3

Timestamp: 0
Queue: [S1@0]
S1max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S2max: 0
S3max: 0

Timestamp: 0
Queue: [S1@0]
S1max: 0
S2max: 0

S1

S2

S3

Timestamp: 0,0,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

S1

S2

S3

Timestamp: 0,1,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

Timestamp: 0,0,0
Queue: [S1@0,0,0]

request@0,1,0 request@0,1,0

S1

S2

S3

Timestamp: 0,1,0
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 1,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,1
Queue: [S1@0,0,0;
S2@0,1,0]

S1

S2

S3

Timestamp: 0,1,0
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 2,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,2
Queue: [S1@0,0,0;
S2@0,1,0]

ack@2,1,0 ack@0,1,2

S1

S2

S3

Timestamp: 2,2,2
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 2,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,2
Queue: [S1@0,0,0;
S2@0,1,0]

S1

S2

S3

Timestamp: 2,2,2
Queue: [S1@0,0,0
S2@0,1,0]

Timestamp: 3,1,0
Queue: [S1@0,0,0;
S2@0,1,0]

Timestamp: 0,1,2
Queue: [S1@0,0,0;
S2@0,1,0]

release@3,1,0

release@3,1,0

S1

S2

S3

Timestamp: 3,3,2
Queue: [S2@0,1,0]

Timestamp: 3,1,0
Queue: [S2@0,1,0]

Timestamp: 3,1,3
Queue: [S2@0,1,0]

S1

S2

S3

Timestamp: 3,4,2
Queue: [S2@0,1,0]

Timestamp: 3,1,0
Queue: [S2@0,1,0]

Timestamp: 3,1,4
Queue: [S2@0,1,0]

ack@3,4,2

ack@3,1,4

S1

S2

S3

Timestamp: 3,4,2
Queue: [S2@0,1,0]

Timestamp: 4,4,4
Queue: [S2@0,1,0]

Timestamp: 3,1,4
Queue: [S2@0,1,0]

Some terms
Often useful: states, executions, reachability

- A state is a global state S of the system: states at all nodes
+ channels

- An execution is a series of states Si s.t. the system is
allowed to transition from Si to Si+1

- A state Sj is reachable from Si if, starting in Si, it’s possible for
the system to end up at Sj

Types of properties: stable properties, invariants

- A property P is stable if

P(Si) -> P(Si+1)

- A property P is an invariant if it holds on all reachable states

Token conservation system

Node 1 Node 2

haveToken: bool haveToken: bool

token

In So

- No messages

- Node 1 has haveToken = true

- Node 2 has haveToken = false

Nodes can send each other the token or discard the token

Token conservation system

Node 1 Node 2

haveToken: bool haveToken: bool

token

Invariant: token in at most one place

Stable property: no token

Token conservation system

Node 1 Node 2

haveToken: bool haveToken: bool

token

How can we check the invariant at runtime?

How can we check the stable property at runtime?

Distributed snapshots

Why do we want snapshots?

- Checkpoint and restart

- Detect stable properties (e.g., deadlock)

- Distributed garbage collection

- Diagnostics (is invariant still true?)

Distributed snapshots

Record global state of the system

- Global state: state of every node, every channel

Challenges:

- Physical clocks have skew

- State can’t be an instantaneous global snapshot

- State must be consistent

Physical time algorithm

What if we could trust clocks?

Idea:

- Node: “hey, let’s take a snapshot @ noon”

- At noon, everyone records state

- How to handle channels?

Physical time algorithm

Channels:

- Timestamp all messages

- Receiver records channel state

- Channel state = messages received after noon but
sent before noon

Example: is there <= 1 token in the system?

Physical time algorithm

Node 1 Node 2

haveToken = true haveToken = false

11:59

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = false

11:59

token@11:59

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot:
- haveToken = false

Snapshot:
- haveToken = false

Snapshot:
- token@11:59

Physical time algorithm

This seems like it works, right?

What could go wrong?

Physical time algorithm

Node 1 Node 2

haveToken = true haveToken = false

11:59 11:58

Physical time algorithm

Node 1 Node 2

haveToken = true haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

token@12:00

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = true

12:00

Snapshot:
- haveToken = true

11:59

Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = true

12:01

Snapshot:
- haveToken = true

12:00

Snapshot:
- haveToken = true

Avoiding inconsistencies

As we’ve seen, physical clocks aren’t accurate enough

Need to use messages to coordinate snapshot

=> make sure Node 2 takes snapshot before receiving
any messages sent after Node 1 takes snapshot

Better algorithm

Node 1 Node 2

haveToken = true haveToken = false

11:59 11:58

Better algorithm

Node 1 Node 2

haveToken = true haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

snapshot@12:00

Better algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

snapshot@12:00
token@12:00

Better algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot:
- haveToken = true

11:59

token@12:00

Snapshot:
- haveToken = false

Better algorithm

Node 1 Node 2

haveToken = false haveToken = true

12:00

Snapshot:
- haveToken = true

11:59

Snapshot:
- haveToken = false

Better algorithm

Node 1 Node 2

haveToken = false haveToken = true
Snapshot:
- haveToken = true

Snapshot:
- haveToken = false

Chandy-Lamport Snapshots

At any time, a node can decide to snapshot

- Actually, multiple nodes can

That node:

- Records its current state

- Sends a “marker” message on all channels

When a node receives a marker, snapshot

- Record current state

- Send marker message on all channels

How to record channel state?

Chandy-Lamport Snapshots

Channel state recorded by the receiver

Recorded when marker received on that channel

- Why do we know we’ll receive a marker on every
channel?

When marker received on channel, record:

- Empty, if this is the first marker

- Messages received on channel since we
snapshotted, otherwise

Chandy-Lamport Snapshots

B A M

D M C

E M F

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = true haveToken = false

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = false

token

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = false

token

Snapshot:
- haveToken = false

marker

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = false

token

Snapshot:
- haveToken = false

Snapshot:
- haveToken = false

marker

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = true
Snapshot:
- haveToken = false

Snapshot:
- haveToken = false

marker

In-flight:
- token

Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = true
Snapshot:
- haveToken = false

Snapshot:
- haveToken = false

Snapshot:
- token

Chandy-Lamport Snapshots

What if multiple nodes initiate the snapshot?

- Follow same rules: send markers on all channels

Intuition:

- All initiators are concurrent

- Concurrent snapshots are ok, as long as we
account for messages in flight

- If receive marker before initiating, must snapshot to
be consistent with other nodes

Chandy-Lamport Snapshots

B A M

D M C

E M F

Consistent Cut

A cut is the set of events on each node in the system
that are included in the snapshot

A consistent cut is a cut that respects causality

If an event is included by any node, all events that
“happen before” the event are also included

Which state is snapshotted?

What can we say about this snapshotted state?

Two things:

- Reachable from Sb

- Can reach Se

Proof is in the paper

- Intuition: state is “consistent” with what actually
happened

Stable Properties and Invariants

Recall: a stable property is one that, once true, stays
true

An invariant is true of all states

Snapshot represents a reachable state, but it may not
represent any actual global state from Sb to Se

Stable Properties and Invariants

If stable property is true in snapshot, we know it must
still be true in Se

If stable property is false in snapshot, we know it must
have been false in Sb

If invariant is false in snapshot, we know the invariant
is violated in at least one reachable state.

If invariant is true in snapshot, we do not know the
invariant is true in any other reachable state.

