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Vector clocks

Precisely represent transitive causal relationships 

T(A) < T(B) <-> happens-before(A, B) 

Idea: track events known to each node, on each node 

Used in practice for eventual and causal consistency 

- git, Amazon Dynamo, …



Vector clocks

Clock is a vector C, length = # of nodes 

On node i, increment C[i] on each event 

On receipt of message with clock Cm on node i: 

- increment C[i] 

- for each j != i 

- C[j] = max(C[j], Cm[j]) 



Example

S1 S2 S3

A (T = ?)

B  (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (1,0,0)

B  (T = ?)

send M (Tm = ?)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (1,0,0)

B  (T = ?)

send M (2,0,0)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (1,0,0)

B  (3,0,0)

send M (2,0,0)

recv M (T = ?)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (1,0,0)

B  (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (T = ?)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (1,0,0)

B  (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (Tm = ?)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (1,0,0)

B  (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (T = ?)
D (T = ?)

E (T = ?)



Example

S1 S2 S3

A (1,0,0)

B  (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (T = ?)
D (0,0,1)

E (T = ?)



Example

S1 S2 S3

A (1,0,0)

B  (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (T = ?)



Example

S1 S2 S3

A (1,0,0)

B  (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (2,3,3)



Example

S1 S2 S3

A (1,0,0)

B  (3,0,0)

send M (2,0,0)

recv M (2,1,0)

C (2,2,0)
send M’ (2,3,0)

recv M’ (2,3,2)
D (0,0,1)

E (2,3,3)



Vector Clocks

Compare vectors element by element 

Provided the vectors are not identical,  

If Cx[i] < Cy[i] and Cx[j] > Cy[j] for some i, j 

Cx and Cy are concurrent 

if Cx[i] <= Cy[i] for all i 

Cx happens before Cy 



S1

S2

S3

Timestamp: 0 
Queue: [S1@0] 
S1max: 0 
S3max: 0

Timestamp: 0 
Queue: [S1@0] 
S2max: 0 
S3max: 0

Timestamp: 0 
Queue: [S1@0] 
S1max: 0 
S2max: 0



S1

S2

S3

Timestamp: 0,0,0 
Queue: [S1@0,0,0]

Timestamp: 0,0,0 
Queue: [S1@0,0,0]

Timestamp: 0,0,0 
Queue: [S1@0,0,0]



S1

S2

S3

Timestamp: 0,1,0 
Queue: [S1@0,0,0]

Timestamp: 0,0,0 
Queue: [S1@0,0,0]

Timestamp: 0,0,0 
Queue: [S1@0,0,0]

request@0,1,0 request@0,1,0



S1

S2

S3

Timestamp: 0,1,0 
Queue: [S1@0,0,0 
S2@0,1,0]

Timestamp: 1,1,0 
Queue: [S1@0,0,0; 
S2@0,1,0]

Timestamp: 0,1,1 
Queue: [S1@0,0,0; 
S2@0,1,0]



S1

S2

S3

Timestamp: 0,1,0 
Queue: [S1@0,0,0 
S2@0,1,0]

Timestamp: 2,1,0 
Queue: [S1@0,0,0; 
S2@0,1,0]

Timestamp: 0,1,2 
Queue: [S1@0,0,0; 
S2@0,1,0]

ack@2,1,0 ack@0,1,2



S1

S2

S3

Timestamp: 2,2,2 
Queue: [S1@0,0,0 
S2@0,1,0]

Timestamp: 2,1,0 
Queue: [S1@0,0,0; 
S2@0,1,0]

Timestamp: 0,1,2 
Queue: [S1@0,0,0; 
S2@0,1,0]



S1

S2

S3

Timestamp: 2,2,2 
Queue: [S1@0,0,0 
S2@0,1,0]

Timestamp: 3,1,0 
Queue: [S1@0,0,0; 
S2@0,1,0]

Timestamp: 0,1,2 
Queue: [S1@0,0,0; 
S2@0,1,0]

release@3,1,0

release@3,1,0



S1

S2

S3

Timestamp: 3,3,2 
Queue: [S2@0,1,0]

Timestamp: 3,1,0 
Queue: [S2@0,1,0]

Timestamp: 3,1,3 
Queue: [S2@0,1,0]



S1

S2

S3

Timestamp: 3,4,2 
Queue: [S2@0,1,0]

Timestamp: 3,1,0 
Queue: [S2@0,1,0]

Timestamp: 3,1,4 
Queue: [S2@0,1,0]

ack@3,4,2

ack@3,1,4



S1

S2

S3

Timestamp: 3,4,2 
Queue: [S2@0,1,0]

Timestamp: 4,4,4 
Queue: [S2@0,1,0]

Timestamp: 3,1,4 
Queue: [S2@0,1,0]



Some terms
Often useful: states, executions, reachability 

- A state is a global state S of the system: states at all nodes 
+ channels 

- An execution is a series of states Si s.t. the system is 
allowed to transition from Si to Si+1 

- A state Sj is reachable from Si if, starting in Si, it’s possible for 
the system to end up at Sj 

Types of properties: stable properties, invariants 

- A property P is stable if 

P(Si) -> P(Si+1) 

- A property P is an invariant if it holds on all reachable states



Token conservation system

Node 1 Node 2

haveToken: bool haveToken: bool

token

In So 

- No messages 

- Node 1 has haveToken = true 

- Node 2 has haveToken = false 

Nodes can send each other the token or discard the token 



Token conservation system

Node 1 Node 2

haveToken: bool haveToken: bool

token

Invariant: token in at most one place 

Stable property: no token



Token conservation system

Node 1 Node 2

haveToken: bool haveToken: bool

token

How can we check the invariant at runtime? 

How can we check the stable property at runtime?



Distributed snapshots

Why do we want snapshots? 

- Checkpoint and restart 

- Detect stable properties (e.g., deadlock) 

- Distributed garbage collection 

- Diagnostics (is invariant still true?) 



Distributed snapshots

Record global state of the system 

- Global state: state of every node, every channel 

Challenges: 

- Physical clocks have skew 

- State can’t be an instantaneous global snapshot 

- State must be consistent



Physical time algorithm

What if we could trust clocks? 

Idea: 

- Node: “hey, let’s take a snapshot @ noon” 

- At noon, everyone records state 

- How to handle channels?



Physical time algorithm

Channels: 

- Timestamp all messages 

- Receiver records channel state 

- Channel state = messages received after noon but 
sent before noon 

Example: is there <= 1 token in the system?



Physical time algorithm

Node 1 Node 2

haveToken = true haveToken = false

11:59



Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = false

11:59

token@11:59



Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot: 
- haveToken = false

Snapshot: 
- haveToken = false

Snapshot: 
- token@11:59



Physical time algorithm

This seems like it works, right? 

What could go wrong?



Physical time algorithm

Node 1 Node 2

haveToken = true haveToken = false

11:59 11:58



Physical time algorithm

Node 1 Node 2

haveToken = true haveToken = false

12:00

Snapshot: 
- haveToken = true

11:59



Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot: 
- haveToken = true

11:59

token@12:00



Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = true

12:00

Snapshot: 
- haveToken = true

11:59



Physical time algorithm

Node 1 Node 2

haveToken = false haveToken = true

12:01

Snapshot: 
- haveToken = true

12:00

Snapshot: 
- haveToken = true



Avoiding inconsistencies

As we’ve seen, physical clocks aren’t accurate enough 

Need to use messages to coordinate snapshot 

=> make sure Node 2 takes snapshot before receiving 
any messages sent after Node 1 takes snapshot 



Better algorithm

Node 1 Node 2

haveToken = true haveToken = false

11:59 11:58



Better algorithm

Node 1 Node 2

haveToken = true haveToken = false

12:00

Snapshot: 
- haveToken = true

11:59

snapshot@12:00



Better algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot: 
- haveToken = true

11:59

snapshot@12:00
token@12:00



Better algorithm

Node 1 Node 2

haveToken = false haveToken = false

12:00

Snapshot: 
- haveToken = true

11:59

token@12:00

Snapshot: 
- haveToken = false



Better algorithm

Node 1 Node 2

haveToken = false haveToken = true

12:00

Snapshot: 
- haveToken = true

11:59

Snapshot: 
- haveToken = false



Better algorithm

Node 1 Node 2

haveToken = false haveToken = true
Snapshot: 
- haveToken = true

Snapshot: 
- haveToken = false



Chandy-Lamport Snapshots

At any time, a node can decide to snapshot 

- Actually, multiple nodes can 

That node: 

- Records its current state 

- Sends a “marker” message on all channels 

When a node receives a marker, snapshot  

- Record current state 

- Send marker message on all channels 

How to record channel state?



Chandy-Lamport Snapshots

Channel state recorded by the receiver 

Recorded when marker received on that channel 

- Why do we know we’ll receive a marker on every 
channel? 

When marker received on channel, record: 

- Empty, if this is the first marker 

- Messages received on channel since we 
snapshotted, otherwise 



Chandy-Lamport Snapshots

B  A  M

D  M  C

E  M  F



Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = true haveToken = false



Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = false

token



Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = false

token

Snapshot: 
- haveToken = false

marker



Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = false

token

Snapshot: 
- haveToken = false

Snapshot: 
- haveToken = false

marker



Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = true
Snapshot: 
- haveToken = false

Snapshot: 
- haveToken = false

marker

In-flight: 
- token



Chandy-Lamport Snapshots

Node 1 Node 2

haveToken = false haveToken = true
Snapshot: 
- haveToken = false

Snapshot: 
- haveToken = false

Snapshot: 
- token



Chandy-Lamport Snapshots

What if multiple nodes initiate the snapshot? 

- Follow same rules: send markers on all channels 

Intuition:  

- All initiators are concurrent 

- Concurrent snapshots are ok, as long as we 
account for messages in flight 

- If receive marker before initiating, must snapshot to 
be consistent with other nodes



Chandy-Lamport Snapshots

B  A  M

D  M  C

E  M  F



Consistent Cut

A cut is the set of events on each node in the system 
that are included in the snapshot 

A consistent cut is a cut that respects causality 

If an event is included by any node, all events that 
“happen before” the event are also included



Which state is snapshotted?

What can we say about this snapshotted state? 

Two things: 

- Reachable from Sb 

- Can reach Se 

Proof is in the paper 

- Intuition: state is “consistent” with what actually 
happened 



Stable Properties and Invariants

Recall: a stable property is one that, once true, stays 
true 

An invariant is true of all states 

Snapshot represents a reachable state, but it may not 
represent any actual global state from Sb  to Se



Stable Properties and Invariants

If stable property is true in snapshot, we know it must 
still be true in Se  

If stable property is false in snapshot, we know it must 
have been false in Sb  

If invariant is false in snapshot, we know the invariant 
is violated in at least one reachable state. 

If invariant is true in snapshot, we do not know the 
invariant is true in any other reachable state. 




