
IMPOSSIBILITY OF CONSENSUS IN
ASYNCHRONOUS ENVIRONMENTS

Ellis Michael

CONSENSUS

𝑛 processes, all of which have an input value from some domain.

Processes output a value by calling decide(𝑣).

Non-faulty processes continue correctly executing protocol steps forever.

We denote the number of faulty processes 𝑓.

• Agreement: No two correct processes decide different values.

• Integrity: Every correct process decides at most one value, and if a

correct process decides a value 𝑣, some process had 𝑣 as its input.

• Termination: Every correct process eventually decides a value.

BINARY CONSENSUS

𝑛 processes, all of which have an input value from {0, 1}. Processes output a

value by calling decide(𝑣).

Non-faulty processes continue correctly executing protocol steps forever. We

denote the number of faulty processes 𝑓. Here, we only consider crash
failures.

• Agreement: No two processes decide different values.

• Integrity: Every process decides at most one value, and if a process

decides a value 𝑣, some process had 𝑣 as its input.

• Termination: Every correct process eventually decides a value.

BINARY CONSENSUS

𝑛 processes, all of which have an input value from {0, 1}. Processes output a

value by calling decide(𝑣).

Non-faulty processes continue correctly executing protocol steps forever. We

denote the number of faulty processes 𝑓. Here, we only consider crash
failures.

• Agreement: No two processes decide different values.

• Integrity: Every process decides at most one value, and if a process

decides a value 𝑣, some process had 𝑣 as its input.

• Termination: Every correct process eventually decides a value.

If you can solve consensus,
you can solve binary

consensus.

Aside: Both safety and liveness properties are
necessary to create a meaningful specification!

Theorem (FLP Impossibility Result): In an
asynchronous environment in which a single
process can fail by crashing, there does not exist a
protocol which solves binary consensus.

INTUITION

• In an asynchronous setting, failed processes are
indistinguishable from slow processes.

• Waiting for failed processes will take forever.

• Not waiting for slow processes could violate
safety.

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

Message Buffer
(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step. Message Buffer

(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step. Message Buffer

(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

(𝑚, 𝑝3)

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step. Message Buffer

(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

(𝑚, 𝑝3)

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step. Message Buffer

(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

(𝑚, 𝑝3)

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step. Message Buffer

(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step.

• Special empty message, always deliverable to any
process (even if there are messages for it in the
network).

Message Buffer
(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step.

• Special empty message, always deliverable to any
process (even if there are messages for it in the
network).

Message Buffer
(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

∅∅

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step.

• Special empty message, always deliverable to any
process (even if there are messages for it in the
network).

Message Buffer
(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

∅

∅

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step.

• Special empty message, always deliverable to any
process (even if there are messages for it in the
network).

Message Buffer
(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

∅

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step.

• Special empty message, always deliverable to any
process (even if there are messages for it in the
network).

• Any message sent to a non-faulty processes is
eventually received. (Stronger assumption than
usual!)

Message Buffer
(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

∅

COMPUTATION MODEL
• Processes are deterministic I/O automata (just like

in your labs; timers are just messages sent from
process to itself).

• They send messages by adding to message buffer,
a multi-set (i.e., messages aren't duplicated by
network). Processes only send finitely-many
messages in a single step.

• Special empty message, always deliverable to any
process (even if there are messages for it in the
network).

• Any message sent to a non-faulty processes is
eventually received. (Stronger assumption than
usual!)

Message Buffer
(network)

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5...

𝑝𝑛

∅

Makes the impossibility
result is stronger!

CONFIGURATIONS

A configuration (usually denoted 𝐶) consists of the states of all
processes and the state of the message buffer.

An event is the delivery of a single message (or ∅) to a process. An

event is applicable to 𝐶 if it is a ∅ or a message in 𝐶's message buffer.

A configuration 𝐶ʹ is reachable from 𝐶 if there is a (possibly empty)

sequence of applicable events starting from 𝐶 that results in 𝐶ʹ.

Configuration 𝐶 is decided if at least one process has decided in 𝐶.

RUNS

A run is an infinite sequence of events starting
from an initial configuration.

A process is non-faulty in a run if it takes infinitely
many steps. It is faulty otherwise.

A run is admissible if at most one process is faulty
and every message sent to a non-faulty process is
eventually delivered.

In other words, the FLP theorem states that
any protocol for binary consensus either
doesn't satisfy safety or allows for an
admissible run in which no value is ever
decided (i.e., that it doesn't satisfy termination,
the liveness property).

From now on, we'll consider a safe and live
binary consensus protocol and show a
contradiction.

VALENCY

By assumption of safety, no configuration has
processes deciding different values.

𝐶 is 0-valent if there are decided configurations

reachable from 𝐶 that decide 0, but none that decide 1.

1-valency is defined in the analogous way.

𝐶 is univalent if it is 0-valent or 1-valent.

𝐶 is bivalent if both 0-deciding and 1-deciding are

reachable from 𝐶.

𝐶

0

VALENCY

By assumption of safety, no configuration has
processes deciding different values.

𝐶 is 0-valent if there are decided configurations

reachable from 𝐶 that decide 0, but none that decide 1.

1-valency is defined in the analogous way.

𝐶 is univalent if it is 0-valent or 1-valent.

𝐶 is bivalent if both 0-deciding and 1-deciding are

reachable from 𝐶.

𝐶

0 1

Observation: bivalent configurations
are not themselves decided.

Observation: 1-valent and bivalent configurations
are not reachable from 0-valent configurations.

0-valent and bivalent configurations are not
reachable from 1-valent configurations.

COMMUTATIVE EVENTS
Lemma 1: If two sequences of events, 𝜎1 and 𝜎2, are taken by disjoint

sets of processes from configuration 𝐶, then 𝜎1(𝜎2(𝐶)) = 𝜎2(𝜎1(𝐶)).

𝐶
𝜎1

𝜎1𝜎2

𝜎2 p1

p2

p3

p4

𝐶

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

0→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

0-valent!

0→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

0-valent!

0→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

1→𝑝2

1→𝑝3

1→𝑝n

...

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

0-valent! 1-valent!

0→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

1→𝑝2

1→𝑝3

1→𝑝n

...

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

0-valent! 1-valent!

0→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

1→𝑝2

1→𝑝3

1→𝑝n

...

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

0-valent! 1-valent!

0→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

1→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

1→𝑝2

1→𝑝3

1→𝑝n

...

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

0-valent! 1-valent!

...

0→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

0→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

1→𝑝2

0→𝑝3

0→𝑝n

...

1→𝑝1

1→𝑝2

1→𝑝3

1→𝑝n

...

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

There must be 0-valent 𝐶0 and  
1-valent 𝐶1 that differ only in the

input value of a single process, 𝑝.
1→𝑝 ⇒ 1 is decided

0→𝑝 ⇒ 0 is decided

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

There must be 0-valent 𝐶0 and  
1-valent 𝐶1 that differ only in the

input value of a single process, 𝑝.

What if 𝑝 crashes at the beginning?

1→𝑝 ⇒ 1 is decided

0→𝑝 ⇒ 0 is decided

BIVALENT INITIAL CONFIGURATIONS

Lemma 2: There exists a bivalent initial configuration.

There must be 0-valent 𝐶0 and  
1-valent 𝐶1 that differ only in the

input value of a single process, 𝑝.

What if 𝑝 crashes at the beginning?

These two configurations are
indistinguishable to the rest of the
processes.

1→𝑝 ⇒ 1 is decided

0→𝑝 ⇒ 0 is decided

DELAYING EVENTS

Lemma 3 (The Delay Lemma): For every bivalent

configuration, 𝐶, and every event applicable to 𝐶, 𝑒,

there exists a sequence of applicable events 𝜎 such

that 𝐶ʹ = 𝑒(𝜎(𝐶)) is bivalent.

𝐶 𝐶ʹ
𝜎 𝑒

PROVING THE MAIN THEOREM

PROVING THE MAIN THEOREM
Constructing the non-terminating
execution:

PROVING THE MAIN THEOREM
Constructing the non-terminating
execution:

1: Let 𝐶 be a bivalent initial
configuration (Lemma 2).

PROVING THE MAIN THEOREM
Constructing the non-terminating
execution:

1: Let 𝐶 be a bivalent initial
configuration (Lemma 2).

𝐶

PROVING THE MAIN THEOREM
Constructing the non-terminating
execution:

1: Let 𝐶 be a bivalent initial
configuration (Lemma 2).

2: For the process which least recently
took a step, take the oldest message
left in the network for it (∅ if none

exists), 𝑒. By Lemma 3, we first take a

sequence of steps 𝜎 and then deliver 𝑒
and remain in a bivalent configuration.

𝐶

PROVING THE MAIN THEOREM
Constructing the non-terminating
execution:

1: Let 𝐶 be a bivalent initial
configuration (Lemma 2).

2: For the process which least recently
took a step, take the oldest message
left in the network for it (∅ if none

exists), 𝑒. By Lemma 3, we first take a

sequence of steps 𝜎 and then deliver 𝑒
and remain in a bivalent configuration.

𝐶

𝐶ʹ

𝜎

𝑒

PROVING THE MAIN THEOREM
Constructing the non-terminating
execution:

1: Let 𝐶 be a bivalent initial
configuration (Lemma 2).

2: For the process which least recently
took a step, take the oldest message
left in the network for it (∅ if none

exists), 𝑒. By Lemma 3, we first take a

sequence of steps 𝜎 and then deliver 𝑒
and remain in a bivalent configuration.

3: Go to 2.

𝐶

𝐶ʹ

𝜎

𝑒

PROVING THE MAIN THEOREM
Constructing the non-terminating
execution:

1: Let 𝐶 be a bivalent initial
configuration (Lemma 2).

2: For the process which least recently
took a step, take the oldest message
left in the network for it (∅ if none

exists), 𝑒. By Lemma 3, we first take a

sequence of steps 𝜎 and then deliver 𝑒
and remain in a bivalent configuration.

3: Go to 2.

𝐶

𝐶ʹ

𝜎

𝑒

𝐶ʹʹ

𝑒ʹ

𝜎ʹ

PROVING THE MAIN THEOREM
Constructing the non-terminating
execution:

1: Let 𝐶 be a bivalent initial
configuration (Lemma 2).

2: For the process which least recently
took a step, take the oldest message
left in the network for it (∅ if none

exists), 𝑒. By Lemma 3, we first take a

sequence of steps 𝜎 and then deliver 𝑒
and remain in a bivalent configuration.

3: Go to 2.

𝐶

𝐶ʹ

𝜎

𝑒

𝐶ʹʹ

𝑒ʹ

𝜎ʹ

. .
 .

PROVING THE MAIN THEOREM
Constructing the non-terminating
execution:

1: Let 𝐶 be a bivalent initial
configuration (Lemma 2).

2: For the process which least recently
took a step, take the oldest message
left in the network for it (∅ if none

exists), 𝑒. By Lemma 3, we first take a

sequence of steps 𝜎 and then deliver 𝑒
and remain in a bivalent configuration.

3: Go to 2.

Every process takes infinitely
many steps (i.e., no process is
faulty). Every message sent is
eventually delivered. This is
an admissible execution.

We take infinitely many steps,
and no process decides! The
protocol fails to meet the
termination property of the
spec.

𝐶

𝐶ʹ

𝜎

𝑒

𝐶ʹʹ

𝑒ʹ

𝜎ʹ

. .
 .

PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and

an applicable event, 𝑒.

PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.

PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.

Otherwise, let 𝒞 be the set of events

reachable from 𝐶 without applying 𝑒 and

𝒟 be 𝑒(𝒞) = { 𝑒(𝐶) : 𝐶 ∈ 𝒞 } (i.e., the set of

all configurations reachable from 𝐶 where

𝑒 was the last event taken).

PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.

Otherwise, let 𝒞 be the set of events

reachable from 𝐶 without applying 𝑒 and

𝒟 be 𝑒(𝒞) = { 𝑒(𝐶) : 𝐶 ∈ 𝒞 } (i.e., the set of

all configurations reachable from 𝐶 where

𝑒 was the last event taken).

𝐶

𝒞

PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.

Otherwise, let 𝒞 be the set of events

reachable from 𝐶 without applying 𝑒 and

𝒟 be 𝑒(𝒞) = { 𝑒(𝐶) : 𝐶 ∈ 𝒞 } (i.e., the set of

all configurations reachable from 𝐶 where

𝑒 was the last event taken).

𝐶

𝒞

𝑒

PROVING THE DELAY LEMMA

Consider a bivalent configuration, 𝐶, and

an applicable event, 𝑒.

If 𝑒(𝐶) is bivalent, then we're done.

Otherwise, let 𝒞 be the set of events

reachable from 𝐶 without applying 𝑒 and

𝒟 be 𝑒(𝒞) = { 𝑒(𝐶) : 𝐶 ∈ 𝒞 } (i.e., the set of

all configurations reachable from 𝐶 where

𝑒 was the last event taken).

𝐶

𝒞

𝒟

𝑒

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

𝒞

𝒟

𝑒

𝐶

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

𝒞

𝒟

𝑒

𝐶

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and
1-valent configurations. For each, this configuration is
either:

𝒞

𝒟

𝑒

𝐶

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and
1-valent configurations. For each, this configuration is
either:

1. In 𝒟,

𝒞

𝒟

𝑒

𝐶

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and
1-valent configurations. For each, this configuration is
either:

1. In 𝒟,

𝒞

𝒟

𝑒

𝐶

0

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and
1-valent configurations. For each, this configuration is
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

𝒞

𝒟

𝑒

𝐶

0

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and
1-valent configurations. For each, this configuration is
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

𝒞

𝒟

𝑒

𝐶

0

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and
1-valent configurations. For each, this configuration is
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

𝒞

𝒟

𝑒

𝐶

0

0

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and
1-valent configurations. For each, this configuration is
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

3. Or past 𝒟 (the ancestor in 𝒟 must also be of the
same valency since it's not bivalent by
assumption).

𝒞

𝒟

𝑒

𝐶

0

0

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and
1-valent configurations. For each, this configuration is
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

3. Or past 𝒟 (the ancestor in 𝒟 must also be of the
same valency since it's not bivalent by
assumption).

𝒞

𝒟

𝑒

0

𝐶

PROVING THE DELAY LEMMA

We want to show 𝒟 contains a bivalent configuration.
Suppose, for the sake of contradiction, that it doesn't.

Then, we first show there must exist both 0-valent and
1-valent configurations in 𝒟.

Because 𝐶 is bivalent, there exist reachable 0-valent and
1-valent configurations. For each, this configuration is
either:

1. In 𝒟,

2. In 𝒞 (just apply 𝑒),

3. Or past 𝒟 (the ancestor in 𝒟 must also be of the
same valency since it's not bivalent by
assumption).

𝒞

𝒟

𝑒

0

𝐶

0

PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss
of generality, let's say it's 0.

𝒞

𝒟

𝑒

𝐶

0

PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟,

there must be a path from 𝐶 to one of these.

𝒞

𝒟

𝑒

𝐶

0

PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟,

there must be a path from 𝐶 to one of these.

𝒞

𝒟

𝑒

𝐶

0
1

PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟,

there must be a path from 𝐶 to one of these.

Then, there must exist adjacent configurations,

𝐶0 and 𝐶1, where 𝑒(𝐶0) is 0-valent and 𝑒(𝐶1) is
1-valent.

𝒞

𝒟

𝑒

𝐶

0
1

PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟,

there must be a path from 𝐶 to one of these.

Then, there must exist adjacent configurations,

𝐶0 and 𝐶1, where 𝑒(𝐶0) is 0-valent and 𝑒(𝐶1) is
1-valent.

𝒞

𝒟

𝑒

𝐶

0
1

01

𝐶1

𝐶0

PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟,

there must be a path from 𝐶 to one of these.

Then, there must exist adjacent configurations,

𝐶0 and 𝐶1, where 𝑒(𝐶0) is 0-valent and 𝑒(𝐶1) is
1-valent.

Let's call the event that takes 𝐶0 to 𝐶1 𝑔.

𝒞

𝒟

𝑒

𝐶

0
1

01

𝐶1

𝐶0

PROVING THE DELAY LEMMA

Now, consider the valency of 𝑒(𝐶). Without loss
of generality, let's say it's 0.

Because there are 1-valent configurations in 𝒟,

there must be a path from 𝐶 to one of these.

Then, there must exist adjacent configurations,

𝐶0 and 𝐶1, where 𝑒(𝐶0) is 0-valent and 𝑒(𝐶1) is
1-valent.

Let's call the event that takes 𝐶0 to 𝐶1 𝑔.

𝒞

𝒟

𝑒

𝐶

0
1

01

𝐶1

𝐶0𝑔

PROVING THE DELAY LEMMA

Almost done! First, we will show that
the processes taking steps 𝑒 and 𝑔
must be the same process.

0

1

𝐶1

𝐶0𝑔

𝑒

𝑒

PROVING THE DELAY LEMMA

Almost done! First, we will show that
the processes taking steps 𝑒 and 𝑔
must be the same process.

If not, 𝑔 is applicable to 𝑒(𝐶0) and
results in a 1-valent configuration
(Lemma 1). 0

1

𝐶1

𝐶0𝑔

𝑒

𝑒

PROVING THE DELAY LEMMA

Almost done! First, we will show that
the processes taking steps 𝑒 and 𝑔
must be the same process.

If not, 𝑔 is applicable to 𝑒(𝐶0) and
results in a 1-valent configuration
(Lemma 1). 0

1

𝐶1

𝐶0𝑔

𝑒

𝑒

𝑔

PROVING THE DELAY LEMMA

Almost done! First, we will show that
the processes taking steps 𝑒 and 𝑔
must be the same process.

If not, 𝑔 is applicable to 𝑒(𝐶0) and
results in a 1-valent configuration
(Lemma 1).

Let's call the process taking these

steps 𝑝.

0

1

𝐶1

𝐶0𝑔

𝑒

𝑒

𝑔

PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates
one failure, it must be able to reach a
decided configuration, 𝐴, without 𝑝
taking steps.

01

𝐶1

𝐶0𝑔

𝑒𝑒

PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates
one failure, it must be able to reach a
decided configuration, 𝐴, without 𝑝
taking steps.

01

𝐶1

𝐶0𝑔

𝑒𝑒
𝐴

𝜎

PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates
one failure, it must be able to reach a
decided configuration, 𝐴, without 𝑝
taking steps.

By Lemma 1, we get the commutative
diagram on the right. A decided

configuration, 𝐴, can reach both 1-valent
and 0-valent configurations.

01

𝐶1

𝐶0𝑔

𝑒𝑒
𝐴

𝜎

PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates
one failure, it must be able to reach a
decided configuration, 𝐴, without 𝑝
taking steps.

By Lemma 1, we get the commutative
diagram on the right. A decided

configuration, 𝐴, can reach both 1-valent
and 0-valent configurations.

01

𝐶1

𝐶0𝑔

𝑒𝑒
𝐴

𝜎

0

𝜎

PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates
one failure, it must be able to reach a
decided configuration, 𝐴, without 𝑝
taking steps.

By Lemma 1, we get the commutative
diagram on the right. A decided

configuration, 𝐴, can reach both 1-valent
and 0-valent configurations.

01

𝐶1

𝐶0𝑔

𝑒𝑒
𝐴

𝜎

01

𝜎 𝜎

PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates
one failure, it must be able to reach a
decided configuration, 𝐴, without 𝑝
taking steps.

By Lemma 1, we get the commutative
diagram on the right. A decided

configuration, 𝐴, can reach both 1-valent
and 0-valent configurations.

01

𝐶1

𝐶0𝑔

𝑒𝑒
𝐴

𝜎

01

𝜎 𝜎
𝑒

PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates
one failure, it must be able to reach a
decided configuration, 𝐴, without 𝑝
taking steps.

By Lemma 1, we get the commutative
diagram on the right. A decided

configuration, 𝐴, can reach both 1-valent
and 0-valent configurations.

01

𝐶1

𝐶0𝑔

𝑒𝑒
𝐴

𝜎

01

𝜎 𝜎
𝑒𝑔

𝑒

PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates
one failure, it must be able to reach a
decided configuration, 𝐴, without 𝑝
taking steps.

By Lemma 1, we get the commutative
diagram on the right. A decided

configuration, 𝐴, can reach both 1-valent
and 0-valent configurations.

As desired, contradiction!

01

𝐶1

𝐶0𝑔

𝑒𝑒
𝐴

𝜎

01

𝜎 𝜎
𝑒𝑔

𝑒

PROVING THE DELAY LEMMA

Since the protocol is correct and tolerates
one failure, it must be able to reach a
decided configuration, 𝐴, without 𝑝
taking steps.

By Lemma 1, we get the commutative
diagram on the right. A decided

configuration, 𝐴, can reach both 1-valent
and 0-valent configurations.

As desired, contradiction!

01

𝐶1

𝐶0𝑔

𝑒𝑒
𝐴

𝜎

01

𝜎 𝜎
𝑒𝑔

𝑒

QED

IS IT OVER? DO WE GIVE UP NOW?

IS IT OVER? DO WE GIVE UP NOW?

IS IT OVER? DO WE GIVE UP NOW?

Options:

• Only guarantee termination during periods of synchrony
(Paxos); implies that no configuration is ever dead

• Use randomization to guarantee termination with probability
1 (Ben-Or)

• Strengthen the assumptions (consensus is solvable in a
synchronous system)

• Constrain/weaken the problem

SOME RELATED PROBLEMS

• 𝒌-set Agreement: allows up to 𝑘 different
decision values

• Generalized Lattice Agreement: processes
decide on sets of values, all decision sets are
comparable by ⊆

• Shared read/write register: processes can read
and write to a register

SOME RELATED PROBLEMS

• 𝒌-set Agreement: allows up to 𝑘 different
decision values

• Generalized Lattice Agreement: processes
decide on sets of values, all decision sets are
comparable by ⊆

• Shared read/write register: processes can read
and write to a register

Still can't guarantee liveness
when 𝑓 ≥ 𝑘

SOME RELATED PROBLEMS

• 𝒌-set Agreement: allows up to 𝑘 different
decision values

• Generalized Lattice Agreement: processes
decide on sets of values, all decision sets are
comparable by ⊆

• Shared read/write register: processes can read
and write to a register

Still can't guarantee liveness
when 𝑓 ≥ 𝑘

Solvable, can guarantee both
safety and liveness! Of

questionable utility.

SOME RELATED PROBLEMS

• 𝒌-set Agreement: allows up to 𝑘 different
decision values

• Generalized Lattice Agreement: processes
decide on sets of values, all decision sets are
comparable by ⊆

• Shared read/write register: processes can read
and write to a register

Still can't guarantee liveness
when 𝑓 ≥ 𝑘

Solvable, can guarantee both
safety and liveness! Of

questionable utility.

Also solvable!
And useful!

