Database Outline

- **DBMS Overview**
- Relational Algebra
- SQL
- ODBC/JDBC/Cocoon SQL Processor

29-Jan-01 16:58

Why use a DBMS in your website? Suppose we are building web-based music distribution site. Several questions arise: - How do we store the data? (file organization, etc.) - How do we query the data? (write programs...) - Make sure that updates don't mess things up? - Provide different views on the data? (registrar versus students) - How do we deal with crashes? Way too complicated! Buy a database system!

Functionality of a DBMS Storage management Abstract data model High level query and data manipulation language Efficient query processing Transaction processing Resiliency: recovery from crashes Different views of the data, security Interface with programming languages

Sche	ema Desi	gn & Im	plementation
• Table	e Students		
	Student	Course	Quarter
	Charles	CS 444	Fall, 1997
	Dan	CS 142	Winter, 1998
Separ view	rates the log of the data.	gical view fr	om the physical
29-Jan-01 16	58		6

Querying a Database Find all the students taking CSE490i in Q1, 2000 S(tructured) Q(uery) L(anguage) select E.name from Enroll E where E.course=CS490i and E.quarter="Winter, 2000" Query processor figures out how to answer the query efficiently.

29-Jan-01 16:58

Selection Example Employee SSN Name DepartmentID Salary 999999999 John 30,000 1 32,000 Tony 1 888888888 45,000 Alice 2 **Select (Salary > 40000)** SSN Name DepartmentID Salary 888888888 45,000 Alice 2 29-Jan-01 16:58 10

Employee			
SSN	Name	DepartmentID	Salary
999999999	John	1	30,000
77777777	Tony	1	32,000
888888888	Alice	2	45,000
SSN	Name	_	
999999999	John	_	
777777777	Tony		
00000000	A 11		

Cartesian Product X

- Binary Operation
- Result is set of tuples combining all elements of R1 with all elements of R2, for R1 \times R2
- Schema is union of Schema(R1) & Schema(R2)
- Notice we could do selection on result to get meaningful info!

29-Jan-01 16:58

Cartesian Product Example

Name	SSN
John	999999999
Tony	777777777
Dependents	
EmployeeSSN	Dname
999999999	Emily
777777777	Joe

Name	SSN	EmployeeSSN	Dname
John	9999999999	999999999	Emily
John	9999999999	777777777	Joe
Tony	777777777	999999999	Emily
Tony	777777777	777777777	Joe
5:58	•	•	14

Join 🖂

13

15

17

- Most common (and exciting!) operator...
- Combines 2 relations
- Selecting only related tuplesEquivalent to
- Cross product followed by selection
- Result has all attributes of the two relations
- Equijoin
 - Join condition is equality between two attributes
- Natural join
 - Equijoin on attributes of same name
 - result has only one copy of join condition attribute

29-Jan-01 16:58

Exa	mple: N	Jatural	Join
Employ	ee		
Name		SSN	
John	John		
Tony		777777777	
Depend	ents		
SSN		Dname	
9999999	199	Emily	
7777777	77	Joe	
nployee 🖂 D Employ	ependents /ee_Depende	nts	
Name	SSN	Dname	
John	9999999999	Emily	
Tony	777777777	Joe	

Complex Queries

Product (pname, price, category, maker) Purchase (buyer, seller, store, prodname) Company (cname, stock price, country) Person(per-name, phone number, city)

Find phone numbers of people who bought gizmos from Fred.

Find telephony products that somebody bought

29-Jan-01 16:58

