CSE 454

Inverted Indices
(with Compression & LSI)

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 1

Project Proto-ldea

 Search + Tagging + Wiki + Social Network = ?

* Project Reality

— Part 1 handed out tomorrow

— If you want to do something different, let me know by
tomorrow

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 2

Standard Web Search Engine Architecture

store documents,
check for duplicates,
extract links

create an
inverted
index

{

T Search

= .= .~/ show results A
e To user cngins
b Servers,

———

10/20/2005 1:58 PM CopyrightsFidé arpasiifesiv Vet BA2s6/ UC Berkeley] 3

Review: Precision & Recall

Precision tp Actual relevant docs
M+ fp
— Proportion of selected
items that are correct

« Recall tp

@ S/ystem returned these

— Proportion of target items

that were selected Precision
¢ Precision-Recall curve

— Shows tradeoff
Recall

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 4

- t
Review *| ¢
e Vector Space Representation
— Dot Product as Similarity Metric t,

e TF-IDF for Computing Weights
= wy = f(i,j)* log(N/n)

terms

But How Process Efficiently? documents

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 5

Today’s Class

« Efficient query processing
— Inverted indicies (creation & query processing)
— Compression

 Latent Semantic Indexing (LSI)

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 6

Course Overview

Info
Extraction Ecommerce
Web Servi i
. eb Services Stuff
Datamining p2p Security | Semantic Web|Advt|

Case Studies: Nutch, Google, Altavista

Information Retrieval
Precision vs Recall

Crawler Architecture

Inverted Indicies Cluster Computing

Systems Foundation: Networking, Synchronization & Monitors

10/20/2005 1:58 PM

Copyright © Kambhampati / Weld 2002-5 7

Search Engine Components

Spider

— Getting the pages

Indexing

— Storing (e.g. in an inverted file)
Query Processing

—Booleans, ...

Ranking

— Vector space model, PageRank, anchor text analysis
Summaries

Refinement

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 8

Efficient Retrieval

Document-term matrix

R A T nf

d; Wy Wip oo Wy oo Wy, 17[d]
dy [way Wo Woj oo Wop 1]dy|
difwip wi oWy Wy, Ld]
dy [Wop Wop oo Wy oo W dy

w; is the weight of term t; in document d;
Most w;;’s will be zero.

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 9

Naive Retrieval

Consider query g = (dy, dy, .-+, G, -+, Gy), Nf=1/[q].
How evaluate q?

(i.e., compute the similarity between q and every document)?
Method 1: Compare q w/ every document directly.
Document data structure:

di = ((t, Wig),s (b Wig), - - (G W), s (b Wi, 1Y)
— Only terms with positive weights are kept.
— Terms are in alphabetic order.
Query data structure:

q: ((t A (2 A2 - - o0 (G), - - o (b A), L)

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 10

Naive Retrieval (continued)
Method 1: Compare q with documents directly

initialize all sim(q, d;) = 0;
for each document d; (i=1, ..., n)

{ for each term t; (G=1,...,m)

if t; appears in both q and d
sim(q, dj) += g *w;
sim(q, d;) = sim(q, d;) *t4ah. *=(1/|d{); }

sort documents in descending similarities;
display the top k to the user;

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 11

Observation

» Method 1 is not efficient

- Needs to access most non-zero entries in doc-term matrix.
Solution: Use Index (Inverted File)

- Data structure to permit fast searching.
Like an Index in the back of a text book.

- Key words --- page numbers.

- E.g, “Etzioni, 40, 55, 60-63, 89, 220"

- Lexicon

- Occurrences

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 12

Search Processing (Overview)

1. Lexicon search
— E.g. looking in index to find entry
2. Retrieval of occurrences
— Seeing where term occurs
3. Manipulation of occurrences
— Going to the right page

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 13

Inverted Files

% Afileis a list of words by position s

10 First entry is the word in position 1 (first word

» Entry 4562 is the word in position 4562 (4562™ word)
% Lastentry is the last word

3% Aninverted file is a list of positions by word!

a (1, 4, 40)
entry (11, 20, 31)

fe 2,39
list (5, 41)

position (9, 16, 26) _—"] aka “Index”
positions (44)

word (14, 19, 24, 29, 35, 45)
words (7)

4562 (21, 27)

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 14

Inverted Files for Multiple Documents

“jezebel” occurs

LEXICON

| DOCID OCCUR POS1 POS2 ... 6timesindocument 34,
3times in document 44,
WORD NDOCS| PTR | 4 times in document 56 . .
jezebel 20 ,/r' [3a] 6] 1] 118] 2087 3922] 3981] 5002
- 44| 3| 215 2291| 3010]
Jezer 8 56] 4] 5| 22| 134] 992]
jezerit 1 \l\ e
jeziah 1 [s66] 3] 203] 245] 287]
jeziel 1
ezt : | OCCURENCE
jezoar 1 | I N DEX
jezrahliah 1 |
jezreel 39 ——— [107

322] 354] 381|405
15| 195 248 1897 1951] 2192

42| 312] 802]

| =2
677
| 7

w|e|o|s

¢ One method. Alta Vista uses alternative

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 15

Many Variations Possible

Address space (flat, hierarchical)
» Record term-position information
Precalculate TF-1DF info

Stored header, font & tag info

e Compression strategies

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 16

Using Inverted Files

Several data structures:

1. For each term t;, create a list (inverted file list) that
contains all document ids that have t;.

1(t) =€ (dy, wyp), (dp, Wy), .., (i wy), ..., (dy, W) }

- d;is the document id number of the ith document.
- Weights come from freq of term in doc
— Only entries with non-zero weights should be kept.

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 17

Inverted files continued

More data structures:

2. Normalization factors of documents are pre-
computed and stored in an array

nf[i] stores 1/|dj].

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 18

Inverted files continued

More data structures:

3. Lexicon: a hash table for all terms in the collection.

— Inverted file lists are typically stored on disk.
— The number of distinct terms is usually very large.

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 19

Digression...

 Data structures on disk...
* Revisiting CSE 326
Big O notation

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 20

Retrieval using Inverted files
initialize all sim(q, d;) =0;
for each term t;inq

{ find I(t) using the hash table;
for each (d;, wy) in 1(t)
sim(g, d;) += q; *wy; }

for each document d;

sim(q, d;) = sim(q, d;) * nffi];
sort documents in descending similarities and

display the top k to the user;

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 21

Observations about Method 2

* If doc d doesn’t contain any term of query q,
then d won’t be considered when evaluating g.

e Only non-zero entries in the columns of the
document-term matrix which correspond to
query terms ... are used to evaluate the query.

e Computes the similarities of multiple documents
simultaneously (w.r.t. each query word)

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 22

Efficient Retrieval

Example (Method 2): Suppose

q={(t1, 1), (t3,1) }, 1/jg|=0.7071
d1={(t1,2), (t2, 1), (t3, 1) 3, nf[1] = 0.4082
d2={ (12, 2), (3, 1), (t4, 1) }, nf[2] = 0.4082
d3={(t1, 1), (3, 1), (4, 1) }, nf[3] = 0.5774
dd = { (11, 2), (t2, 1), (t3, 2), (4, 2) }, nf[4] = 0.2774
d5={ (12, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333
I(t1) = { (d1, 2), (d3, 1), (d4, 2) }
1(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) }
1t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) }
I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5,2) }

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 23

4= LD (8 D], Ll =07071 Efficient Retrieval
d1={(tL, 2), (2, 1), 3, 1) }, nf[1] = 0.4082

d2={ (2, 2). (3. 1), (t4, 1) } nf[2] = 0.4082

d3={ (L 1), (3. 1), (t4, 1) }, nf3] = 0.5774

d4={(tL 2). (2. 1), (3. 2), (t4, 2) }, nf[4] = 0.2774

d5 = { (12, 2). (t4. 1), (t5, 2) , nf[5] = 0.3333

I(t1) = { (d1, 2), (d3, 1), (d4,2) } Aﬁer tlis processed_:

1(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) } sim(q, d1) =2, sim(q, d2) =0,
1(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4,2) } sim(q, d3) =1

1(t4) ={ (d2, 1), (d3, 1), (d4, 1), (d5, 1) } sim(q, d4) =2, sim(q, d5) =0

1(t5) = { (d5,2) } After t3 is processed:
sim(q, d1) =3, sim(q,d2) =1,
sim(qg, d3) =2

sim(q, d4) =4, sim(q,d5)=0
After normalization:

sim(q, d1) =.87, sim(q, d2) = .29,

sim(q, d3) = .82

sim(q, d4) =.78, sim(q, d5) =0

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 24

Efficiency versus Flexibility

e Storing computed document weights is good
for efficiency, but bad for flexibility.
— Recomputation needed if TF and IDF formulas
change and/or TF and DF information changes.
e Flexibility improved by storing raw TF, DF
information, but efficiency suffers.

A compromise
— Store pre-computed TF weights of documents.

— Use IDF weights with query term TF weights
instead of document term TF weights.

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 20025 25

How Inverted Files are Created

Crawler Repository | = [Ezull - Forward
Index
ptrs

docs

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 26

Creating Inverted Files

Repository

* File containing all documents downloaded

* Each doc has unique 1D

« Ptr file maps from IDs to start of doc in repository

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 27

Creating Inverted Files

NF

e Length of each document
Term Doc # Pos
.] 7
did 1 2
enact 1 3
julius 1 4
::assav ; g

Forward Index - p7

10/20/2005 1:58 PM Copyr 2002-5 28

Creating Inverted Files m

Creating Inverted Files e @ ()
“m@ © m

- «(sort=d
— Index

Term Doc # Term Doc # \
i 1 ambitious 2 = «
did 1 be 2
enact 1 brutus 1
julius 1 brutus 2
caesar 1 capitol 1
i 1 caesar 1
was i caesar 2
killed 1 caesar 2
P 1 did 1
the 1* enact 1
SO I’ted I n d ex capitol 1 hath 1
brutus 1 i 1
illed 1 i 1
me 1 i 1

(positional info as well)

10/20/2005 1:58 PM

29

LeXICOn DOCID OCCUR POS1 POS2 .

WORD | NDOCS| PTR

jezebel 20 1 — [34] 6] 1] 118] 2087 3922] 3981] 5002
44| 3| 215| 2291 3010]

Jezer 3 56] 4] 5] 22 134] 992]

jezerit 1

jeziah 1 [566] 3] 203] 245] 287]

jeziel 1 - .

jeaian i Inverted File List

jezoar 1

jezrahliah 1

jezreel 39 —

10/20/2005 1:58 PM

Copyright © Kambhampati / Weld 2002-5 30

The Lexicon

e Grows Slowly (Heap’s law)

— O(nP) where n=text size; B is constant ~0.4 — 0.6
— E.g. for 1GB corpus, lexicon = 5Mb

— Can reduce with stemming (Porter algorithm)

« Store lexicon in file in lexicographic order

— Each entry points to loc in occurrence file
(aka inverted file list)

10/20/2005 1:58 PM

Copyright © Kambhampati / Weld 2002-5

Memory Too Small?

1-4
/ '\
TN S
L+ T2 J [38 | [4]
¢ Merging

— When word is shared in two lexicons
— Concatenate occurrence lists

- O(nl1 +n2)

¢ Overall complexity

— O(n log(n/M)

10/20/2005 1:58 PM

Copyright © Kambhampati / Weld 2002-5

Stemming

Are there different index terms?
— retrieve, retrieving, retrieval, retrieved, retrieves...
e Stemming algorithm:

— (retrieve, retrieving, retrieval, retrieved, retrieves) =
retriev

— Strips prefixes of suffixes (-s, -ed, -ly, -ness)
— Morphological stemming

10/20/2005 1:58 PM

Copyright © Kambhampati / Weld 2002-5

Construction
 Build Trie (or hash table)

1 6 911 1719 24 28 33 40 46 50 55 60

: d __made: 50

m a /

Q t Q O\n‘
G-

10/20/2005 1:58 PM

Copyright © Kambhampati / Weld 2002-5

Thisis a text. A text has many words. Words are made from letters.

Stop lists

e Language-based stop list:
— words that bear little meaning
— 20-500 words
— http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
 Subject-dependent stop lists
* Removing stop words
— From document
- From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140

10/20/2005 1:58 PM

Copyright © Kambhampati / Weld 2002-5

Stemming Continued

+ Can reduce vocabulary by ~ 1/3

* C, Java, Perl versions, python, c#
www.tartarus.org/~martin/PorterStemmer

* Criterion for removing a suffix

— Does "a document is about w," mean the same as
—a"a document about w,"

* Problems: sand / sander & wand / wander

10/20/2005 1:58 PM

Copyright © Kambhampati / Weld 2002-5

Compression

¢ What Should We Compress?
— Repository
— Lexicon
— Inv Index
* What properties do we want?
— Compression ratio
— Compression speed
— Decompression speed
— Memory requirements
Pattern matching on compressed text
Random access

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 37

Inverted File Compression

Each inverted list has the form <f, ;d,, d,, d;, ..., dfl >
A naive representation results in a storage overhead of (f + n) * [logN
This can also be stored as - <f;d;,d,~d,,....d;, —d; ;>

Each difference is called a d-gap. Since Z(d —gaps)<N,

each pointer requires fewer than [log N bits.

Trick is encoding since worst case

- Assume d-gap representation for the rest of the talk, unless stated
otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 38

Text Compression

Two classes of text compression methods
e Symbolwise (or statistical) methods

— Estimate probabilities of symbols - modeling step

— Code one symbol at a time - coding step

— Use shorter code for the most likely symbol

— Usually based on either arithmetic or Huffman coding
¢ Dictionary methods

— Replace fragments of text with a single code word

— Typically an index to an entry in the dictionary.

« eg: Ziv-Lempel coding: replaces strings of characters with a pointer to
a previous occurrence of the string.

— No probability estimates needed
m) Symbolwise methods are more suited for coding d-gaps

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 39

Classifying d-gap Compression Methods:

Global: each list compressed using same model

— non-parameterized: probability distribution for d-gap sizes is
predetermined.

— parameterized: probability distribution is adjusted according to
certain parameters of the collection.

Local: model is adjusted according to some parameter,
like the frequency of the term

By definition, local methods are parameterized.

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 40

Conclusion

e Local methods best
« Parameterized global models ~ non-parameterized
— Pointers not scattered randomly in file
« In practice, best index compression algorithm is:
— Local Bernoulli method (using Golomb coding)

« Compressed inverted indices usually faster+smaller than
— Signature files
— Bitmaps

Local < Parameterized Global < Non-parameterized Global

\ Not by much

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 41

Motivating the Need for LSI
T — : -

LN LR ER O CEALY T EL

AT

MBDE e

-- Relevant docs may not have the query terms
-> but may have many “related” terms

-- Irrelevant docs may have the query terms
-> but may not have any “related” terms

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 42

Terms and Docs as vectors in Latent Semantic Indexing
111 1
faCtor Space In addition to doc-doc similarity, .
We can compute term-term distance * Creates modified vector space
D t vect . . .
ocument vestor « Captures transitive co-occurrence information
\! .

alblc[d b Jaln i e‘“\q?&‘o — If docs A & B don’t share any words, with each other,

%ce g (1) i g (1) g g g g Ifterms_are_indeper?dem,me but both share lots of words with doc C,thenA&BwiII

ystem | 2| 1 1] 0 0] o[0] o[0 W be considered similar

Human 1/ 0/ 0] 1jjOojo0[0] 0lO —Ifiti P)

Computer o1 o 1/ of ol o 0 I G e — Handles polysemy (adam’s apple) & synonymy

esponse related t to th 1 1

Time o 1] 0 of 1[0/ o[o[0 Butcan slso ek the question » Simulates query expansion and document

EPS 1] 0/ 1/ o] 0f o[0] 0] O “Are there independent clustering (SOI’t Of)

Survey 0/ 1/ 0/0]o0fjoj0OjO1 dimensions which define the

Trees o/ ofojojoj1]1 10 space where terms & docs are

Graph o/ ofojojojoj 1 11 vectors ?”

Minors 0joojojoooj11
10/20/2005 1:58 PM opyright © Kambhampati / Weld 2002-5 43 10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 44

LSI Intuition Visual Example
* Classify Fish

e The key idea is to map documents and queries — Length
into a lower dimensional space (i.e., composed — Height
of higher level concepts which are in fewer
number than the index terms)

* Retrieval in this reduced concept space might - i A
be superior to retrieval in the space of index va "'-" <
terms o g ot

70 .
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 45 10/20/2005 1:58 PM Copyright © Kambhampati / W wé\ " m m u'n

Move Origin Reduce Dimensions

¢ To center of centroid

? H H haign?? .' . s 2
* Butare these the best axes® « What if we only consider “size >,
We retain 1.75/2.00 x 100 (87.5%) T
g of the original variation. . |
Thus, by discarding the yellow axis * } f.
we lose only 12.5% _J-
of the original information. " o
-

Better if one axis accounts for most data variation
What should we call the red axis? /

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 47 10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 48

Not Always Appropriate

E AT
/@% s \
E|
/ u /
{

w
s

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 49

Linear Algebra Review

Let A be a matrix

Xis an Eigenvector of A if

- A*X= X * -)b
A is an Eigenvalue

Transpose:

T
-

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 50

Latent Semantic Indexing Defns

e Let m be the total number of index terms
e Let n be the number of documents
e Let [Aij] be aterm-document matrix
— With m rows and n columns
— Entries = weights, wij, associated with the pair [ki,dj]
e The weights can be computed with tf-idf

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 51

Singular Value Decomposition

 Factor [Aij] matrix into 3 matrices as follows:

* (Aij) = (U) (S) (V)
— (V) is the matrix of eigenvectors derived from (A)(A)t
— (V)tis the matrix of eigenvectors derived from (A){(A)

—(S)isan rxr diagonal matrix of singular values
* r=min(t,n) thatis, the rank of (Aij)

« Singular values are the positive square roots of the eigen
values of (A)(A)! (also (A){(A))

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 52

LSI in a Nutshell

Documents
Terms M =
mxn mxr rxr rxn
A = U D v

Singular Value mk ko on
Decomposition Uy Dy Vi

(SVD):
Convert term-document U

matrix into 3 matrices
U,Sand VvV

Recreate Matrix:
Multiply to produce
approximate term-

document matrix.

Use new matrix to

process queries,

Reduce Dimensionality:
Throw out low-order
rows and columns

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5

Example

U=
03996 -0.1037 05606 -0.3717 -0.3919 -0.3482 0.1029
04180 -0.0641 04878 01566 05771 01981 -0.1094
03464 -0.4422 -0.3997 -05142 02787 00102 -0.2857
01888 0.4615 00040 -00279 -02087 04193 -06629

03602 03776 00914 015% 02045 03701 01023
term ch2 | ch3 |ch4 |chS |ch6 |ch7 |ch8 |ch9 0.4075 03622 -0.3657 -0.2684 -0.0174 02711 05676
— 02750 01667 01303 04376 03844 03066 01230
conwollabifity |1 |1 |0 o |1 |o o |1 02259 0309 03579 03127 02406 -03122 02611
02958 04232 00277 04305 03800 05114 02010
observabilty |1 |0 0 o |1 |1 o |1
S(7x7)
realizaion |1 |0 1 o [1 |o |1 o S0 o 0o 0 o o
023 0 0 0 0 0
feedback o 1 o o [o |1 o o o oiews 0 o o o
0 o o1®2 0 0 0
contoller 0|1 0o o [1 |1 o o 0 o o o1ms o o
0 o o0 o o005 o0
observer o |1 1 o |1 |1 o o 0 o o 0 o o0 osm
transfer o o o Jo |1 |1 o o |[vee-
function 02017 -0.2674 0.3883 -0.5393 0.3926 -0.2112 -0.4505
polynomial |0 |0 |o |o |1 |o |1 o 03399 04811 00649 -03760 05959 00421 01462
0188 00351 04582 05T 02211 04247 043ds
matrices o o (o o |1 o 1 |1 00000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 00000
06838 01913 01609 02535 00050 05229 036%

0itsh 0S7ie 00566 05365 0.4iss 03168 02858
02175 05151 04380 01608 02095 03161 0595
ThlS happens to be a rank_7 matriX 02791 02591 06442 01593 -0.1648 05455 0.2998
-so only 7 dimensions required
Singular values = Sqrt of Eigen values of AAT
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 54

Now to Reduce Dimensions...
¢ In the matrix (S), select k largest singular values
+ Keep the corresponding columns in (U) and (V)t
¢ The resultant matrix is called (M), and is given by

= (M) = (U) (Sl (W)

- where k, k <r, is the dimensionality of the concept space
¢+ The parameter k should be

- large enough to allow fitting the characteristics of the data

— small enough to filter out the non-relevant representational

Formally, this will be the rank-k (2)

matrix that is closest to M in the
PRt matrix norm sense

0.1

03996 -0.1037
04180 -0.0641

03464 -0.4422 - U2 (9x2) =

01888 04615 0 03996 -0.1037
03602 03776 - 04180 -0.0641
04075 0.3622 - 03464 -0.4422
02750 0.1667 - 01888 04615

03602 03776
0.4075 0.3622
02750 0.1667

02259 -0.3096 -
02958 -0.4232

39901 0 02259 -0.3096
0 22813 02958 -0.4232
0 01
0 0 52(2x2) =
o 0 39901 0
0 0 0 22813
0 0

(18 = V2 (8x2) = T

02917 -0.2674
0.3399 0.4811
0.1889 -0.0351
-0.0000 -0.0000
06838 -0.1913
04134 05716
02176 -0.5151
02791 -0.2591

02917 -0.2674
03399 04811
01889 -0.0351
-0.0000 -0.0000
06838 -0.1913
04134 05716 -
02176 05151
02791 -0.2591

U2*$2*V2 will be a 9x8 matrix
10/20/2005 1:58 PM Copyright © KambhamatatBiareedzisites original matrix

@
3

Coordinate transformation inherent in LSI
M=USVT

Mapping of keywords into
LSl space is given by US

For k=2, the mapping is:

Mapping of a doc d=[w1....wk] into
LS| space is given by dUS™

The base-keywords of

The doc are first mapped

To LSI keywords and

Then differentially weighted

LSk Lsy
controllability 1.5944439 -0.2365708
observability 1.6678618 -0.14623132

realization 1.3821706 -1.0087909
feedback 0.7533309 1.05282 By st
controller 14372339 086141896
observer 16259657 082628685
Transfer function 1.0972775 0.38029274
polynomial 0.90136355 -0.7062905 corotesy
matrices 11802715 -0.96544623
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 58

details
AC
eg\'&g’_ ‘\53\59‘
T
10/20/2005 1:58 PM Copyright © Kambhampati / Weld 20025 o\l‘a‘ 55
What should be the value of k? U,S,V,"
5 components ignored
K=2
USVT =U;5V
= 2 o [ow [as [ae [an [oo [0 u,s,v,"
oty [1 (1 [0 Jo [1 [0 [o |1
T S R O O S ENME K=4 s o100 Loz o s
mim fo [+ fo fo o i fo fo|
ot Jo |1 [0 Jo 1 |1 [o |0
a0 |1 |1 [0 [1 [1 |0 |o 3cc
w0 o [0 Jo |1 [t [0 |0 ignored
sowonst [0 [0 [0 Jo [1 [0 [1 |0
‘malrices. o [0 Jo Jo 1 0 1 1 129405600 o
T
UeS6Vs
K=6 -
One component ignored 42130 LOST? 00 05TBR - CRZIESS 01T 065ESTES
10/20/2005 1:58 PM Copyright 57
T
t1= database «——
5 t2=SQL ==
10 t3=index
& t4=regression
g t5=likelihood
3> 8 t6=linear
s T8
§~ 9
&
3 4
20
:2‘ 1
wre 143 Projected locations of the 10 de ts (from table 1
e 1 plane spanned by the fir nponents of th

term matri M

Calculating Information Loss

In agreement with our intuition, most of the va n the data is captured
by the first two principal components. In fact, if we were to retain only these

two principal components (as two surrog
terms), the fraction of
tains is (A7 4 Py e, only 7.5% of the information has been
lost (in‘a-mean=square sense). TF we represent the d
dimensional principal component sp.

terms

ead of the six ori

ariance thatour two-dimensional representation re-

uments in the new two-

he coefficients for each document
correspond to the first two columns of the U matrix:

Should clean this up into a
slide summarizing the info
loss formula

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 60

10

SVD Computation complexity

e For an m*n matrix SVD computation is
— O(km2n+k’n3) complexity
« k=4 and k’=22 for best algorithms

— Approximate algorithms that exploit the sparsity of M are
available (and being developed)

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 20025 61

What LSI can do

¢ LSI analysis effectively does

— Dimensionality reduction

— Noise reduction

— Exploitation of redundant data

— Correlation analysis and Query expansion (with related words)
¢ Any one of the individual effects can be achieved with

simpler techniques (see thesaurus construction). But LSI
does all of them together.

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 62

LSl is not the most sophisticated
dimensionality reduction technique

Dimensionality reduction is a useful technique for any
classification/regression problem

— Text retrieval can be seen as a classification problem

Many other dimensionality reduction techniques

— Neural nets, support vector machines etc.

Compared to them, LSI is limited because it’s linear

— It cannot capture non-linear dependencies between original
dimensions

- Eg. @)

10/20/2005 1:58 PM Copyright © Kambhampati / Weld 2002-5 63

11

