CSE 454

Synchronization, Monitors,
Deadlocks

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 1

Course Overview

Info Extraction Ecommerce

pop) Web Services /\o&&
Datamining Security | Semantic Web

/
Case Studies Nutch, Google, Altavisa /|
Information Retrieval Crawler Archit.?éure
Precision vs Recall »
Inverted Indicies Synchronization & Monitors

Systems Foundation: Networking & Clusters

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 2

Course Overview

Info Extraction Ecommerce

‘gg&
Pop) Web Services \(\g\
Datamining Security | Semantic Wepl —

7
Case Studies NutchiiGoogle, Altavisa /|
I d

Information Retrieval Crawler Architecture
Precison vs Recall
Inverted Indicies Synchronization & Monitors

Systems Foundation: Networking & Clusters

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 3

Reading

» Focused Crawling: A New Approach To Topic-
Specific Web Resource Discovery,

« Efficient Crawling Through URL Ordering,
— ldeas may well help your crawier find webcams
— Read to the extent that they are helpful

» The Anatomy Of A Large-Scale Hypertextual Web

Search Engine
—“Must” reading for everyone

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 4

Threads and processes

¢ Most modern OS'ssupport two entities:
— the process defines the address space and general process
attributes (such as open files, etc.)
— the thread defines a sequential execution stream within a
process
¢ A thread isbound to a single process
— processes can have multiple threads executing within them
— sharing data between threadsis cheap: all see same address
space
¢ Threadsbecome the unit of scheduling
— processes are just containersin which threads execute

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 5

Thread Design Space

. older
l:\ MS/DOS UNIXes
address one thread/process one thread/process
space one process many processes
thread ? ? ?
Java ? ? Mach, NT,
ik . Chorus,
Linux, ...
many threads/process many threads/process
one process many processes
4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 6

Synchronization

e Threads cooperate in multithreaded programs
— to share resources, access shared data structures
* e.g., threads accessing a memory cache in a web server
— a9, to coordinate their execution
* e.g., adisk reader thread hands off a block to a network writer
e For correctness, we have to control this cooperation

— mugt assume threadsinterleave executions arbitrarily and at
different rates

« scheduling is not under application writers' control
— we control cooperation using synchronization
« enables us to restrict the interleaving of executions
* Note: thisalso appliesto processes, not just threads
— and it also applies across machinesin a distributed system

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 7

Shared Resources

¢ Focus on coor dinating accessto shared resources
— basic problem:
« two concurrent threads are accessing a shared variable
« if the variable is read/modified/written by both threads, then access
to the variable must be controlled
« otherwise, unexpected results may occur
e Overview:
— mechanisms to control accessto shared resources
« low level mechanisms like locks
« higher level mechanisms like monitors and condition variables
— patternsfor coordinating accessto shared resources
« bounded buffer, producer-consumer, ...

41412005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 8

The classic example

¢ Suppose we have to implement a function to withdraw
money from a bank account:

int withdrawaccount, amount) {
bal ance = get_bal ance(account);
bal ance -= anount;
put _bal ance(account, bal ance);
return bal ance;

}

¢ Now suppose that you and your S.O. sharea bank
account with a balance of $100.00
— what happensif you both go to separate ATM machines, and
smultaneoudy withdraw $90.00 from the account?

41412005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 9

Example continued

¢ Represent the situation by creating a separate thread for
each person to do the withdrawals
— have both threads run on the same bank mainframe:

int withdraw(account, amount) { int withdraw(account, amount) {
bal ance = get _bal ance(account); bal ance = get _bal ance(account);
bal ance - = amount; bal ance - = amount;
put _bal ance(account, bal ance); put _bal ance(account, bal ance);
return balance; return bal ance;

} }

¢ What'sthe problem with this?
— what are the possible balance values after this runs?

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 10

Interleaved Schedules

« Theproblem isthat the execution of the two threads can
be interleaved, assuming preemptive scheduling:

bal ance = get _bal ance(account);
bal ance -= amount;

context switch
Execution sequence bal ance = get _bal ance(account) ;
as seen by CPU

bal ance - = anount;

put _bal ance(account, bal ance) ;
context switch

put_bal ance(account, bal ance);

¢ What'sthe account balance after this sequence?
— who' shappy, the bank or you? ;)

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 1

The crux of the matter

¢ The problem: two concurrent threads access a
shared resour ce (account) without any
synchronization

— createsarace condition
— output isnon-deterministic, depends on timing

¢ We need mechanismsfor controlling access to shared

resour ces in the face of concurrency
— S0 we can reason about the operation of programs
— esentially, re-introducing determinism

e Synchronization is necessary for any shared data
structure
— buffers, queues, lists, hashtables, ...

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 12

When are Resources Shared?

¢ Local variables are not shared

— refer to data on the stack, each thread hasits own stack

— never pass/share/store a pointer to alocal variable on another
thread’ s stack

¢ Global variablesare shared

— gdtored in the static data segment, accessible by any thread

* Dynamic objectsare shared

— gtored in the heap, shared if you can name it
« in C, can conjure up the pointer
— eg. void *x = (void *) OXDEADBEEF
« in Java, strong typing prevents this
— must pass references explicitly

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 13

Mutual Exclusion

* Wewant to use mutual exclusion to synchronize
access to shared resour ces

» Code that uses mutual exclusion to synchronize
its execution iscalled a critical section
—only onethread at atime can execute in the critical

section

— all other threads are forced to wait on entry
—when athread leaves a critical section, another can enter

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 14

Critical Section Requirements

Mutual exclusion
— at mogt onethread isin the critical section
Progress

— if thread T isoutsde the critical section, then T cannot prevent
thread S from entering the critical section

Bounded waiting (no starvation)
— if thread T iswaiting on the critical section, then T will eventually
enter the critical section
« assumes threads eventually leave critical sections
Performance
— the overhead of entering and exiting the critical section is small
with respect to the work being done within it

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 15

Mechanisms for Building Critical

Sections
L ocks
— very primitive, minimal semantics; used to build others
Semaphores

— basic, easy to get the hang of, hard to program with
M onitors

— high level, requireslanguage support, implicit operations
— easy to program with;

— E.g.,, Java“synchroni zed()”

M essages

— dmple model of communication and synchronization based on

(atomic) transfer of data across a channel
— direct application to distributed systems

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 16

Locks

A lock isa object (in memory) that providesthe
following two oper ations:

— acquire(): athread callsthis before entering a critical section
— release(): athread callsthis after leaving a critical section
Threadspair up callsto acquire() and release()

— between acquire() and release(), the thread hol ds the lock

— acquire() does not return until the caller holdsthe lock
« at most one thread can hold a lock at a time (usually)

— s0: what can happen if the callsaren’t paired?
Implementation requires hardwar e support
— atomict est - and- set ingruction

— disable interrupts

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 17

Using Locks

acqui re(l ock)

bal ance = get _bal ance(account);
int withdraw(account, amount) { e ()

bal ance -= amount;
acqui re(l ock);

‘ acqui re(l ock) ‘

bal ance = get_bal ance(account)
bal ance -= anount

critical
section

‘pm_hal ance(account, bal ance) ; ‘

put _bal ance(account, bal ance) rel ease(l ock);

rel ease(l ock); bal ance = get _bal ance(account);
return bal ance; bal ance - = amount ;

put _bal ance(account, bal ance);
rel ease(l ock) ;

* What happenswhen green triesto acquire the lock?
* Why isthe“return” outsidethecritical section?

— isthisok?

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 18

Deadlock

* When two threads are waiting on a lock
held by the other

Dan: “Please get your clothes on Galen”

Galen: “Give me another math problem, Dad.”

Dan: “I’ll do that after you start getting your clothes
on.”

Galen: “| won't get my clothes on until you give me
aproblem.”

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 19

int dan() { acqui re(l ockl)
acqui re(l ockl) ; -
acqui re(l ock2) ; acqui re(l ock2)
critical acqui re(l ockl)
section acqui re(l ock2)

code
rel ease(l ock2) ;
rel ease(l ockl) ;
return;

That's all folks...
}

int galen() {
acqui re(l ock2) ;
acqui re(l ockl);
critical
section
code
rel ease(l ockl) ;
rel ease(l ock2) ;
return;

}

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 20

Avoiding Deadlock

* Simplest method
» Focuson lock order

» Every procedure should get locksin same
order
— What if use overlapping sets of locks?

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 21

Monitors

¢ A programming language construct that supports
controlled accessto shared data
— synchronization code added by compiler, enforced at runtime
— why doesthis help?

¢ Monitor isa software module that encapsulates:
— shared data structures
— proceduresthat operate on the shared data
— synchronization between concurrent threadsinvoking those

procedures

e Monitor protectsthe data from unstructured access
— guarantees one may only access data through procedures
— hence in legitimate ways

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 22

A monitor

waiting queue of threads

trying to enter the monitor l:|

at most one thread operations (procedures)

in monitor at a
time

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 23

Monitor facilities

¢ Mutual exclusion
— only one process can be executing insde at any time
« thus, synchronization implicitly associated with monitor
— if asecond processtriesto enter a monitor procedure, it blocks
until the firgt has|eft the monitor
« more restrictive than locks, semaphores!
« but easier to use most of the time
¢ Onceinside, a process may discover it can’t continue,
and may wish to sleep
— or, alow some other waiting process to continue
— condition variables provided within monitor
* processes can wait or signal others to continue
« condition variable can only be accessed from inside monitor

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 24

Condition Variables

¢ A placeto wait; sometimes called a r endezvous point
e Three operationson condition variables
— wait(c)

« wait for somebody else to signal condition

« thus, condition variables have wait queues
— signal(c)

« release monitor lock, so somebody else can get in

« wake up at most one waiting process/thread

« if no waiting processes, signal is lost
— broadcast(c)

« release monitor lock

« wake up all waiting processes/threads

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 25

Two Kinds of Monitors

¢ Hoare monitors: signal(c) means
— run waiter immediately
— sgnaler blocksimmediately
« condition guaranteed to hold when waiter runs
« but, signaler must restore monitor invariants before signaling!
¢ Mesamonitors: signal(c) means
— waiter is made ready, but the signaler continues
« waiter runs when signaler leaves monitor (or waits)
« condition is not necessarily true when waiter runs again
— sgnaler need not regtore invariant until it leaves the monitor

— being woken up isonly a hint that something has changed
« must recheck conditional case

4/14/2005 1:17 PM

Copyright © Kambhampati / Weld / Liu 2002,2005 27

Bounded Buffer using Monitors

M onitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) {
while(array “resources’ isfull)
wait(not_full);
add “x" to array “resources’
signal(not_empty);
}
procedure get_entry(resource *x) {
while (array “resources’ is empty)
wait(not_empty);
*x = get resource from array “ resources’
signal(not_full);
}
}

4/14/2005 1:17 PM

Copyright © Kambhampati / Weld / Liu 2002,2005 26

Examples

Hoare monitors
— if (notReady)

« wait(c)
M esa monitors

— while(notReady)
« wait(c)

M esa monitors easier to use
— more efficient
— fewer switches

— directly supports broadcast

4/14/2005 1:17 PM Copyright © Kambhampati / Weld / Liu 2002,2005 28

Synchronization in the 454 Project

¢ Multiplecrawler threads

— More efficient than requesting, waiting for single page to
download while doing nothing else (interleave I/O with
computation)

¢ What are the shared resour ces?
— Page Repository?
— Queues?

« Only one thread may take pages off a queue, but
« What about adding to a thread' s queue

— Everything?
« Consistent view during checkpointing

4/14/2005 1:17 PM

Copyright © Kambhampati / Weld / Liu 2002,2005 29

