Fintan
An Algorithmic Approach to News Aggregation

Alyssa Harding, Brian Ngo, Brian Steadman, Nina Liong

Fintan seeks to provide a news aggregation service similar to existing services like Digg" or
Reddit?, but augment existing user voting systems with algorithmic ranking. In addition, the service
clusters similar news entries from various blogs together, providing a diverse view on a single news
topic. We seek to present this in an intuitive user experience that users of other news aggregation
services will instantly be familiar with.

Project Goals

The original goals of our project were three-fold. We wanted to create a way to rank stories
algorithmically in order to augment user voting, generate relevant clusters of stories, and create an
intuitive user interface for our product. Of the original goals, we were able to satisfactorily achieve two
of the three. In the following sections we will describe the segments of our implementation pipeline, the
problems we faced, and possible room for improvement.

Pipeline: Retrieving Blog Data

The first stage of the Fintan pipeline was to retrieve blog data from an external API, Spinn3r>.
Spinn3r is a service operated by the company responsible for Tailrank” (another news aggregation
service), where they make their blog crawling engine available to the public. Spinn3r actively crawls over
10 million blogs on the web, and provides a lot of interesting blog metadata with each blog entry. Using
their open sourced Java API, we wrote a program that automatically retrieves blog data and converts it
into Hadoop-serializable formats for further processing. Although they provide a Java API to access their
services, several data points were missing from their implementation. Thus, we implemented a few of
those features and will be contributing our changes back to the Spinn3r product in the near future.

Pipeline: Clustering

This stage of the pipeline uses the most computational resources and is also where we spent a
lot of efforts in optimizing. The clustering pipeline is actually made up of four distinct steps: data
preparation, suffix tree clustering, cluster selection, and aggressive cluster combination.

In the first phase the blog data from the previous pipeline stage is prepped for clustering and
shrunk down to reduce data requirements further down the pipeline. Blog IDs, which usually contain the
URL of that entry are hashed to a unique integer. A table of the integer to URL mappings is written out
to the file system to aid in re-associating IDs with entry data later in the pipeline. Furthermore, the text

www.digg.com

www.reddit.com

www.spinn3r.com, free for educational use
www.tailrank.com

N N

of the articles is normalized, removing all markup language, white space, capitalization, and punctuation
besides periods, which are needed to mark the end of a sentence.

The second phase involved the construction of suffix trees. Suffix trees may be constructed with
O(n) space complexity, where n is the number of unique suffixes, and O(m) time complexity, where m is
the number of words in the corpus. We implemented the O(n) space complexity but implementing O(m)
time complexity was seen to be too difficult and not worth the time. However, we still ran into
numerous memory issues on our Mapreduce nodes, and thus had to introduce further optimizations
which will be discussed in a later section.

The purpose of the third phase is to extract the top 500 clusters from our numerous trees.
Clusters are defined as any node in the final tree. The metric we use to score a cluster is the number of
articles in a certain node multiplied by the number of words in its n-gram minus one (this was to
eliminate depth 1 nodes, which contain many IDs but have little value).

In the fourth and final phase the top 500 clusters are aggressively combined to form the final
groups. The clustering is performed by going through the top 500 scoring clusters in descending order
and comparing them to other clusters. Two clusters are said to be similar if the number of matching
documents between them is larger than half the size of the largest cluster. Any given cluster in this list
may only be combined into a group once, after which it is removed from the list of top clusters.

Pipeline: Ranking & SQL Conversion

After the blog entries are clustered, we assign an initial rank to each entry within a cluster based
on the blog's tier (derived from the metadata in the crawl stage) and the date it was posted. This
rewards blogs which have good reputations and which post articles in the cluster early. Each cluster is
given a score based on the ranks of the blogs comprising it. To bridge the backend and the frontend, we
then run a Mapreduce job to generate SQL statements which (when run) will put each entry and cluster
into our MySQL database.

Pipeline: Frontend

Our frontend was written in Ruby, using the Rails framework. We use MySQL as our data store
and serve up pages with the Mongrel HTTP server. AJAX was also used when appropriate to create a
better user experience. The aim of the frontend Ul design was to provide a simple but also familiar
experience when compared to other news aggregation sites. We made numerous design choices to
improve usability and increase the visibility and effectiveness of our main content.

Algorithmic Choices

We made several choices in algorithms when implementing Fintan. To address the issue of how
to cluster our blog entries, we decided on using suffix tree clustering instead of k-means clustering.
Research done in information retrieval has shown that suffix tree clustering has higher average precision
than any other text document clustering algorithm with O(n) runtime (Zamir & Etzioni, 1998). Ironically,
because of problems we ran into with STC, we also implemented a K-Means clustering algorithm as well

as a Naive-Bayes classifier in order to alleviate the issues we were having with memory. Lastly, in
addressing the issue of ranking entries within clusters, we chose to create a custom ranking algorithm to
initially reflect the blog's relevance and the date entries were posted, and then incorporate user votes.

Screenshots and Use Cases

In order to keep the brevity of this report, we’ll briefly describe what a user can do on the Fintan
site and provide a few screenshots of the user experience. We encourage the reader to try a live demo
at http://www.brianngo.net:3001.

The best clusters are displayed first on the Fintan front page. Each cluster has the best post’s title as its
headline. Clicking on the headline will take the user to the original site where the blog post is from.

Google's Next Frontier

Microsoft Plans Data Center in Siberia
Microsoft s discussing plans to buid a data center In Irkutsk, one of the argest cities in Siberia. The faciity
will b abie 1o hold 10,000 senens, acconding 1o Birger Steen, 1he hedd of Microsos Russian and CI5
pusiness unit. The discussions were oullined in a press briefing Friday and reporied by Russian news oullets
Kommersant and Crews.

The user clicks the link underneath the cluster to view the other posts.

3 itemns in this cluster

- -
Microsoft Plans Data Center in Siberia
Microsofl ks discussing plans i build a data cenler in Iiutsk, one of the largest clies in Siberia. The faciktywill be able to hold 10,000
seners, according b Binger Sleen, the head of Micrasolfs Russian and CIS business unit The Biscussions wene oulined in a press
Eeiefng Fricay 3nd reporied by Russian news outiels Komenarsant and Cnews.

Add Siberia to Microsoft's datacenter locale list
Add Russia b the listof lscales for Asture Micnosof datacenbers powening the comipany’s growirsg Eamily of Live sendces and supporing
back-end nkastudure. Microsoll alieady announced its datacenter plans for Chicago, Dublin, San Anlonio, Santa Clara and Chindy
Wash

Microsoft Plans Data Center in Siberia
Microsof has anndunced plans b bulld & data center in Irutsk. one of e Lagest clies in Siberia The tacilly will be able o hold 10,000
SpNers, acconding o Birger Sleen, the head of MicrosolTs Russian and CI5 business unit. The comeany's plans ware oulingd in a
EeRaS Deieng Fridsy S0 rapoed by FUss|an news outlels Komenarsant and Crews 1

No comments
Login to add comments

If the user likes the cluster, he goes back to the front page and votes up, or down if he feels that the
cluster is irrelevant.

¢s Microsoft Plans

tis discussi 0 Microsoft is discussit

L—U) 0 hold 1) will be able to hold 1
0 SS unit. The ¢ o business unit. The d
Kommersant and Cr Kommersant and Cn

Although not pictured here in the report, the user can also post comments on clusters and view their
previous voting/comment history.

http://www.brianngo.net:3001/

Surprises and Challenges

We had a large number of challenges that we encountered during the project:

e Spam. Not only was the high level of noise from blogs a huge issue, but a large number of the
blogs we retrieved from Spinn3r were loaded with spam. Filtering out the spam would’ve been a
complex project itself, so we attempted to do our best to work around it using naive filters.

o Cluster size. We faced two major problems in clustering: data size limitations and quality of
clusters. We had to make a decision on which to work on as the solutions to each required a
non-trivial amount of development and both solutions could probably not be implemented by
the deadline. We chose to try to increase the amount of data we could run through the
clustering; reasoning that by the nature of our clustering this would also increase the quality of
our clusters. We tried several strategies to fix this problem including removing stop words and
truncating articles to the first few hundred words. We finally managed to solve our data
problems by coming up with a splitting strategy for our suffix trees. Our splitting techniques for
STC are described in the technical appendix.

e Cluster quality. However, this did not yield the improvements to cluster quality that we had
expected. We found that while articles were being clustered intelligently it was not in the way
we had anticipated. Rather than being grouped by content, similar writing styles ended up being
the dominating relationship of our clusters. Because of this, many times the articles of a blog
would be clustered with each other as the editors use similar language across posts and many
blogs contain a signature which appears in each post.

Interestingly enough, the same issue happened when we implemented a K-Means clustering
algorithm to cluster blog entries together. Articles of the same writing style would consistently
be clustered together.

e (Classification. In an attempt to solve our cluster size problem, we attempted to write a classifier
to classify blog entries into broad categories, essentially splitting our input data set into
portions. We ran custom web crawls of selected portions of the DMOZ project and trained
Naive-Bayes classifiers on the content. However, the best accuracy our classifier was able to
achieve was slightly below 60%. Even after attempting to augment our Naive-Bayes with
boosting or bagging, we weren’t able to produce a good result set out of our classifier.

e Ranking. We expected to use PageRank to assign an initial rank to each of the blog entries that
we encountered. PageRank, however, requires a densely linked corpus. When we examined
our corpus, we discovered that the blogs rarely linked to one another and had to create another
method of initially ranking the entries.

Experiments

Throughout development of our clustering algorithms, we had a small test set of hand selected
blog entries known to cluster to five different natural clusters. They ranged in topics from the latest tech
news on Windows Vista to the NIE government report. We would run the small test set through our
clustering algorithms and investigate the output to see how well it did with our informal metric. The
metric we used was to see how many of the natural clusters our clustering algorithms were able to

identify. Sometimes the clustering algorithms would output more than the number of natural clusters
that existed, but we would ignore the extra clusters and didn’t count that against the algorithm.

We had two clustering algorithms that were implemented: suffix tree clustering and k-means
clustering. Of the two, suffix tree clustering performed better and was able to identify more natural
clusters than the k-means algorithm. However, STC also produced a lot of “noise” clusters. For example,
with an input data set of 5 natural clusters, it would sometimes output upwards of 30 clusters, with at
best 3 clusters being actual natural clusters (though usually they were missing an entry from the natural
cluster or had an entry from another cluster — if the majority of the posts were of the same natural
cluster we counted it as a success).

With k-means clustering, we could specify the number of clusters it should output, thus
reducing the noise. However, it frequently failed at identifying the correct number of natural clusters
and very often clustered blog entries according to writing style rather than content. The success rate of
k-means was much lower, with only 1-2 natural clusters identified at best.

After analysis of our experiments we concluded there are several ways to improve both
algorithms. In regards to the STC algorithm, we believe that using methods that disallow a blog
clustering with itself would help. Also, giving higher weightings to proper nouns in the suffix tree
construction would help us get past the writing style barrier. In regards to the k-means clustering
algorithm, we believe that using a different distance measure would help immensely. We didn’t have
time to implement a tf-idf distance measure but that may be a great choice considering our input
content.

Conclusion and Future Work

We are incredibly proud of our work on Fintan and the amount we have accomplished in the
quarter we are able to work on it. Working with data from the blogosphere is incredibly challenging, and
we’ve come a long way from the beginning of the project. Each of the group members has learned an
incredible amount and it was an invaluable experience for all of us. Had we more time, we would
invariably focus on improving our clustering algorithms, implement a solid classifier, and tackle the
problem of addressing blog spam. Lastly, we would love to transition our code into a more cohesive
environment, where the backend processing done by Mapreduce could easily communicate with our
frontend framework. Currently the project runs in many separate pieces due to security issues with the
educational Mapreduce cluster as well as our “production” server. In the end, we believe this project
was a great success in many aspects.

Appendices
Included here are more detailed technical descriptions that we left out of the main report, as well as
logistical details of our project.

Technical Appendix

Splitting suffix trees

A big difficulty we overcame was figuring out how to appropriately split up the trees so that they
could be held resident in memory. Two to three days of blog entries amounted to approximately
200mb of data. The final suffix tree representing this data amounted to 300GB of data, or a
1500x increase. This final tree needed to be held completely in memory during the reducing
phase. We finally observed that when two trees are merged that branches starting with a
different first word would never combine and therefore are independent of each other. Seeing
this we implemented a splitting mechanism on the tree where the hash codes of the first word
in each branch was used to determine which reducer it should go to. This breakthrough allowed
us to stop running on trivial <2mb data sources, and move onto the full data sources by splitting
all trees into more than 7000 smaller trees.

Group Responsibilities

Group members worked together on a lot of the aspects of the project, but we attempted to have each
member “own” or be responsible for a portion of the project. Here is how the responsibilities break
down.

e Brian Steadman: Wrote almost the entire suffix tree clustering code.

e Alyssa Harding: Helped on STC, wrote the ranking & conversion part of the pipeline.

e Nina Liong: Frontend coding and designed the database schema.

e Brian Ngo: Project management, data retrieval code, k-means & classifier code, experiments.

Credit

We would like to give credit to the Spinn3r team for providing a great service. We also incorporated
some code from the WEKA project for more aggressive stop word identification in our k-means
clustering implementation. Lastly, we used Mallet for our Naive-Bayes classifier.

Obtaining and Using Fintan

A demo of Fintan is up at http://www.brianngo.net:3001. You can also obtain a copy of our entire

codebase via SVN at http://svn.brianngo.net/fintan. Use the username and password of “uwcse” and

“zrxIx” to gain access. Almost all the parts of Fintan are designed to run separately, so there is no single
command to run them all. We frequently ran our jobs within the Eclipse environment, and we advise
that you do the same if you are interested in running any of the Mapreduce processes. Before running
them please make sure that all of the paths are correct in the related job files. We have the paths
hardcoded in the code since editing program arguments in Eclipse isn’t as convenient as it should be. A

http://www.brianngo.net:3001/
http://svn.brianngo.net/fintan

word of caution: running a job can take upwards of four hours for clustering a small data set. Getting
data from the Spinn3r API can also take several hours, as well as saturate your internet bandwidth (also,
please don’t run it more than once as this might alert the Spinn3r team that the UW CSE API key is being
abused). For any questions on running the Mapreduce jobs, contact brianngo@cs.

Running the Ruby on Rails server is much simpler, provided that you have the correct version of Ruby
(1.8.6), Rails (1.2.5), and Mongrel (latest) installed. Additionally, you’ll need MySQL and set up the
databases to be accessed by the user specified in the Rails database schema file. After that it’s as simple
as running the ‘script/server' command from the frontend directory.

	Appendices

