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• Panorama signups available next week (via web page)

Announcements Projective geometry

Readings
• Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Chapter 23: 

Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, 
pp. 463-534 (for this week, read 23.1 - 23.5, 23.10)

– available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Ames Room

Projective geometry—what’s it good for?
Uses of projective geometry

• Drawing
• Measurements
• Mathematics for projection
• Undistorting images
• Focus of expansion
• Camera pose estimation, match move
• Object recognition via invariants

Today:  single-view projective geometry
• Projective representation
• Point-line duality
• Vanishing points/lines
• Homographies
• The Cross-Ratio

Later:  multi-view geometry

Applications of projective geometry 

• Criminisi et al., “Single View Metrology”, ICCV 1999
• Other methods

– Horry et al., “Tour Into the Picture”, SIGGRAPH 96
– Shum et al., CVPR 98
– ...

Vermeer’s Music Lesson
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Measurements on planes

Approach:  unwarp then measure
What kind of warp is this?

• A Homography

Image rectification

To unwarp (rectify) an image
• solve for homography H given p and p’
• solve equations of the form:  wp’ = Hp

– linear in unknowns:  w and coefficients of H
– H is defined up to an arbitrary scale factor
– how many points are necessary to solve for H?

p
p’

work out on board
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Solving for homographies Solving for homographies

A h 0

Linear least squares
• Since h is only defined up to scale, solve for unit vector ĥ
• Minimize 

2n × 9 9 2n

• Solution: ĥ = eigenvector of ATA with smallest eigenvalue
• Works with 4 or more points

(0,0,0)

The projective plane
Why do we need homogeneous coordinates?

• represent points at infinity, homographies, perspective 
projection, multi-view relationships

What is the geometric intuition?
• a point in the image is a ray in projective space

(sx,sy,s)

• Each point (x,y) on the plane is represented by a ray (sx,sy,s)
– all points on the ray are equivalent:  (x, y, 1) ≅ (sx, sy, s)

image plane

(x,y,1)
y

xz

Projective lines
What is a line in projective space?

• A line is a plane of rays through origin
– all rays (x,y,z) satisfying:  ax + by + cz = 0
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• A line is also represented as a homogeneous 3-vector l
l p

l

Point and line duality
• A line l is a homogeneous 3-vector
• It is ⊥ to every point (ray) p on the line:  l p=0

p1
p2

What is the intersection of two lines l1 and l2 ?
• p is ⊥ to l1 and l2 ⇒ p = l1 × l2

Points and lines are dual in projective space
• every property of points also applies to lines

l1
l2

p

What is the line l spanned by rays p1 and p2 ?
• l is ⊥ to p1 and p2 ⇒ l = p1 × p2 

• l is the plane normal

Ideal points and lines

Ideal point (“point at infinity”)
• p ≅ (x, y, 0) – parallel to image plane
• It has infinite image coordinates

(sx,sy,0)y

x
z image plane

Ideal line
• l ≅ (a, b, 0) – parallel to image plane

(a,b,0)
y

x
z image plane

• Corresponds to a line in the image (finite coordinates)
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Homographies of points and lines
Computed by 3x3 matrix multiplication

• To transform a point:  p’ = Hp
• To transform a line:  lp=0 → l’p’=0

– 0 = lp = lH-1Hp = lH-1p’ ⇒ l’ = lH-1

– lines are transformed by postmultiplication of H-1

3D projective geometry
These concepts generalize naturally to 3D

• Homogeneous coordinates
– Projective 3D points have four coords:  P = (X,Y,Z,W)

• Duality
– A plane N is also represented by a 4-vector
– Points and planes are dual in 3D: N P=0

• Projective transformations
– Represented by 4x4 matrices T:  P’ = TP,    N’ = N T-1

3D to 2D:  “perspective” projection

Matrix Projection: ΠPp =
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Preserves
• Lines 
• Incidence

Does not preserve
• Lengths
• Angles
• Parallelism

Vanishing points

Vanishing point
• projection of a point at infinity

image plane

camera
center

ground plane

vanishing point

Vanishing points (2D)

image plane

camera
center

line on ground plane

vanishing point

Vanishing points

Properties
• Any two parallel lines have the same vanishing point
• The ray from C through v point is parallel to the lines
• An image may have more than one vanishing point

image plane

camera
center

C

line on ground plane

vanishing point V

line on ground plane
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Vanishing lines

Multiple Vanishing Points
• Any set of parallel lines on the plane define a vanishing point
• The union of all of these vanishing points is the horizon line

– also called vanishing line
• Note that different planes define different vanishing lines

v1 v2

Vanishing lines

Multiple Vanishing Points
• Any set of parallel lines on the plane define a vanishing point
• The union of all of these vanishing points is the horizon line

– also called vanishing line
• Note that different planes define different vanishing lines

Computing vanishing points

Properties
• P∞ is a point at infinity, v is its projection
• They depend only on line direction
• Parallel lines P0 + tD, P1 + tD intersect at X∞
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Computing vanishing lines

Properties
• l is intersection of horizontal plane through C with image plane
• Compute l from two sets of parallel lines on ground plane
• All points at same height as C project to l
• Provides way of comparing height of objects in the scene

ground plane

lC

Fun with vanishing points Perspective cues
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Perspective cues Perspective cues

Comparing heights

VanishingVanishing
PointPoint

Measuring height

1

2

3

4

5
5.4

2.8
3.3

Camera height

q1

Computing vanishing points (from lines)

Intersect p1q1 with p2q2

v

p1

p2

q2

Least squares version
• Better to use more than two lines and compute the “closest” point of 

intersection
• See notes by Bob Collins for one good way of doing this:

– http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

C

Measuring height without a ruler

ground plane

Compute Y from image measurements
• Need more than vanishing points to do this

Y
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The cross ratio
A Projective Invariant

• Something that does not change under projective transformations 
(including perspective projection)

P1

P2

P3
P4

1423

2413

PPPP
PPPP
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The cross-ratio of 4 collinear points

Can permute the point ordering
• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry
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R
H=

R
H=
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Measuring height

RH

vz

r

b

t
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H
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image cross ratio

H

b0

t0
vvx vy

vanishing line (horizon)

Measuring height vz

r

b

t0
vx vy

vanishing line (horizon)

v

t0

m0

What if the point on the ground plane b0 is not known?
• Here the guy is standing on the box, height of box is known
• Use one side of the box to help find b0 as shown above

b0

t1

b1

C

Measurements within reference plane

Solve for homography H relating reference plane to image plane
• H maps reference plane (X,Y) coords to image plane (x,y) coords
• Fully determined from 4 known points on ground plane

– Option A:  physically measure 4 points on ground
– Option B:  find a square, guess the dimensions
– Option C:  Note  H = columns 1,2,4 projection matrix

» derive on board

• Given (x, y), can find (X,Y) by H-1

reference plane
[ ]TYX 10

[ ]Tyx 1

image plane

Criminisi et al., ICCV 99
Complete approach

• Load in an image
• Click on lines parallel to X axis

– repeat for Y, Z axes
• Compute vanishing points
• Specify 3D and 2D positions of 4 points on reference plane
• Compute homography H
• Specify a reference height 
• Compute 3D positions of several points
• Create a 3D model from these points
• Extract texture maps
• Output a VRML model
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Vanishing points and projection matrix
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[ ]T00011 Ππ = = vx (X vanishing point)

Z3Y2 ,similarly, vπvπ ==

[ ] origin  worldof projection10004 == TΠπ

[ ]ovvvΠ ZYX=
Not So Fast!  We only know v’s up to a scale factor

[ ]ovvvΠ ZYX cba=
• Can fully specify by providing 3 reference points

3D Modeling from a photograph

3D Modeling from a photograph Camera calibration
Goal:  estimate the camera parameters

• Version 1:  solve for projection matrix
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• Version 2:  solve for camera parameters separately
– intrinsics (focal length, principle point, pixel size)
– extrinsics (rotation angles, translation)
– radial distortion

Calibration:  Basic Idea
Place a known object in the scene

• identify correspondence between image and scene
• compute mapping from scene to image

Issues
• must know geometry very accurately
• must know 3D->2D correspondence

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm
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Estimating the Projection Matrix
Place a known object in the scene

• identify correspondence between image and scene
• compute mapping from scene to image

Direct Linear Calibration

Direct Linear Calibration

Can solve for mij by linear least squares
• use eigenvector trick that we used for homographies

Direct linear calibration
Advantages:

• Very simple to formulate and solve
• Once you know the projection matrix, can compute intrinsics 

and extrinsics using matrix factorizations

Disadvantages?
• Doesn’t model radial distortion
• Hard to impose constraints (e.g., known focal length)
• Doesn’t minimize the right error function

For these reasons, nonlinear methods are preferred
• Define error function E between projected 3D points and image positions

– E is nonlinear function of intrinsics, extrinsics, radial distortion

• Minimize E using nonlinear optimization techniques
– e.g., variants of Newton’s method (e.g., Levenberg Marquart)

Alternative:  Multi-plane calibration  

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
• Only requires a plane
• Don’t have to know positions/orientations
• Good code available online!

– Zhengyou Zhang’s web site: http://research.microsoft.com/~zhang/Calib/

– Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

– Matlab version by Jean-Yves Bouget:  
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

Summary
Things to take home from this lecture

• Homogeneous coordinates and their geometric intuition
• Homographies
• Points and lines in projective space

– projective operations: line intersection, line containing two points
– ideal points and lines (at infinity)

• Vanishing points and lines and how to compute them
• Single view measurement

– within a reference plane
– height

• Cross ratio
• Camera calibration

– using vanishing points
– direct linear method


