Announcements

« Panorama signups available next week (via web page)

Projective geometry

Ames Room

Readings
+  Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Chapter 23:
Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992,
pp. 463-534 (for this week, read 23.1 - 23.5, 23.10)
— available online: http: Cs.cmu. indy.pdf

Projective geometry—what'’s it good for?

Uses of projective geometry
« Drawing
* Measurements
Mathematics for projection
Undistorting images
Focus of expansion
Camera pose estimation, match move
Object recognition via invariants
Today: single-view projective geometry
« Projective representation
« Point-line duality
« Vanishing points/lines
* Homographies
* The Cross-Ratio
Later: multi-view geometry

Applications of projective geometry

Vermeer's Music Lesson

+ Criminisi et al., “Single View Metrology”, ICCV 1999
+ Other methods

— Horry et al., “Tour Into the Picture”, SIGGRAPH 96
— Shum etal., CVPR 98

Measurements on planes

A

Approach: unwarp then measure

What kind of warp is this?
« A Homography

Image rectification
- - \

To unwarp (rectify) an image
« solve for homography H given p and p’
 solve equations of the form: wp’ = Hp
— linear in unknowns: w and coefficients of H
— His defined up to an arbitrary scale factor
— how many points are necessary to solve for H?
work out on board




Solving for homographies

Solving for homographies
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Linear least squares
+ Since h is only defined up to scale, solve for unit vector h
+ Minimize ||AQ|?
||AR|? = (Ah)"Ah = h"ATAR
+ Solution: h = eigenvector of ATA with smallest eigenvalue
« Works with 4 or more points

The projective plane

Projective lines

Why do we need homogeneous coordinates?
« represent points at infinity, homographies, perspective
projection, multi-view relationships
What is the geometric intuition?
« apointin the image is a ray in projective space

¥
(sx,sY,8)
(0,00)
z X image plane

« Each point (x,y) on the plane is represented by a ray (sx,sy,s)
— all points on the ray are equivalent: (x, y, 1) = (sx, sy, s)

What is a line in projective space?

» Aline is a plane of rays through origin
— all rays (x,y,z) satisfying: ax +by+cz=0

x
in vector notation:  0=[a b c][y}

I p

« Aline is also represented as a homogeneous 3-vector |

Point and line duality

Ideal points and lines

« Aline |l is a homogeneous 3-vector
 ltis L to every point (ray) p on the line: 1 p=0

What is the line | spanned by rays p, and p, ?
s lislLtop,andp, = I=p,xp,
« lis the plane normal

What is the intersection of two lines I, and I, ?
e pisltoljandl, = p=Ixl,

Points and lines are dual in projective space
« every property of points also applies to lines

. 1
image plane z S~..) image plane

Ideal point (“point at infinity”)
* p=(x, Y, 0)— parallel to image plane
« It has infinite image coordinates

Ideal line
* 1=(a, b, 0) - parallel to image plane
« Corresponds to a line in the image (finite coordinates)




Homographies of points and lines

Computed by 3x3 matrix multiplication
« To transform a point: p’ = Hp
« To transform a line: 1p=0 — I'p’=
—0=Ip=IH"Hp = IH'p’ = I =H"
— lines are transformed by postmultiplication of H-1

3D projective geometry

These concepts generalize naturally to 3D
« Homogeneous coordinates
— Projective 3D points have four coords: P = (X,Y,Z,W)
* Duality
— Aplane Nis also represented by a 4-vector
— Points and planes are dual in 3D: N P=0
« Projective transformations
— Represented by 4x4 matrices T: PP=TP, N'=NT-

3D to 2D: “perspective” projection

X
Matrix Projection: p:{u}:{* . } Y |-mp
|2

Preserves
* Lines
« Incidence
Does not preserve
* Lengths
« Angles
« Parallelism

Vanishing points

image plane

vanishing point

camera
center

ground plane

Vanishing point
« projection of a point at infinity

Vanishing points (2D)

image plane

vanishing point

camera
center

line on ground plane

Vanishing points

image plane
vanishing point V
camera
center
c "
line on ground plane
line on ground plane
Properties

* Any two parallel lines have the same vanishing point
* The ray from C through v point is parallel to the lines
» Animage may have more than one vanishing point




Vanishing lines

Vanishing lines

Multiple Vanishing Points
« Any set of parallel lines on the plane define a vanishing point
* The union of all of these vanishing points is the horizon line
— also called vanishing line
» Note that different planes define different vanishing lines

Multiple Vanishing Points
* Any set of parallel lines on the plane define a vanishing point
* The union of all of these vanishing points is the horizon line
— also called vanishing line
* Note that different planes define different vanishing lines

Computing vanishing points

Computing vanishing lines
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Properties v=1IP_
« P_ is a point at infinity, v is its projection
» They depend only on line direction
+ Parallel lines P, + tD, P, + tD intersect at X_,

ground plane

Properties
« lis intersection of horizontal plane through C with image plane
« Compute I from two sets of parallel lines on ground plane
« All points at same height as C project to |
« Provides way of comparing height of objects in the scene

Fun with vanishing points

Perspective cues

/




Perspective cues

Perspective cues

Comparing heights

Measuring height

Vanishing

Computing vanishing points (from lines)

Measuring height without a ruler

Intersect p,q, with p,q,
v=(p1 X q1) x (p2 X q2)

Least squares version
+ Better to use more than two lines and compute the “closest” point of
intersection
+ See notes by Bob Collins for one good way of doing this:
— http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

ground plane

Compute Y from image measurements
« Need more than vanishing points to do this




The cross ratio

A Projective Invariant

« Something that does not change under projective transformations
(including perspective projection)

The cross-ratio of 4 collinear points

v
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Can permute the point ordering [P, —P,| [P, — Py
« 41 = 24 different orders (but only 6 distinct values)
This is the fundamental invariant of projective geometry
Measuring height tv,
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Measurements within reference plane

image plane

0 1]
reference plane

Solve for homography H relating reference plane to image plane

* H maps reference plane (X,Y) coords to image plane (x,y) coords
+ Fully determined from 4 known points on ground plane

— Option A: physically measure 4 points on ground

— Option B: find a square, guess the dimensions

— Option C: Note H = columns 1,2,4 projection matrix

» derive on board

+ Given (x,y), can find (X,Y) by H"!

Measuring height
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scene cross ratio
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R image cross ratio

R (reference point)
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ground plane X

Y
scene points represented as P = 4

1

X
image points as p=|y
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Measuring height tv,

vanishing line (horizon)

What if the point on the ground plane by is not known?
« Here the guy is standing on the box, height of box is known
+ Use one side of the box to help find by as shown above

A N

Criminisi et al., ICCV 99

Complete approach
* Load in an image

Click on lines parallel to X axis

— repeat for Y, Z axes
Compute vanishing points
Specify 3D and 2D positions of 4 points on reference plane
Compute homography H
Specify a reference height
Compute 3D positions of several points
Create a 3D model from these points
Extract texture maps
Output a VRML model




Vanishing points and projection matrix

3D Modeling from a photograph
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=M 0 0 0]" =v,(Xvanishing point)

similarly, n, =vy, n,=Vv,
e m, = mfo 0 0 1]" =projection of world origin
m=[v x Vy V, o]
Not So Fast! We only know v’s up to a scale factor
1'[=[avX bv, cv, o]

« Can fully specify by providing 3 reference points

Camera calibration

3D Modeling from a photograph
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Goal: estimate the camera parameters
« Version 1: solve for projection matrix

sx] [* * o+ ¥
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» Version 2: solve for camera parameters separately
— intrinsics (focal length, principle point, pixel size)
— extrinsics (rotation angles, translation)
— radial distortion
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Calibration: Basic Idea

Chromaglyphs

Place a known object in the scene
« identify correspondence between image and scene
« compute mapping from scene to image

Issues
* must know geometry very accurately
* must know 3D->2D correspondence
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Courtesy of Bruce Culbertson, HP Labs
http://www. hpl.hp. [& i




Estimating the Projection Matrix

Place a known object in the scene
« identify correspondence between image and scene
« compute mapping from scene to image
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Direct Linear Calibration

X

w; moo M1 Mo2 Mo3 v
o~ k2

v | £ | mig mi1 miz mi3 7
1 mog M2y Moo M23 17

mooXi + mo1Y; + moaZi + mos

mooX + m21Y; + m2oZ; +mo3z
m10Xi +m11Y; + miaZ; + mis

mooX; + m21Y; + mo2Zi + moz

u =

wi(maoXi + mo1Y; + mooZi + ma3) = mooX; + mo1Y; + moaZi + mo3
vi(m20X; + m21Y; + mooZi + mas) = m1oX; + m11Yi + m1aZi + mz

moo
moy
moz
mo3
mio
Xi Y Zi 1 0 0 00 —wX; —uY; —uiZ —ui]|mn|_[0
[ 00XV, Z 1 —vX; —vY;, —uZ —v)|mp|~ [0

Direct Linear Calibration
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Can solve for m; by linear least squares
« use eigenvector trick that we used for homographies

Direct linear calibration

Advantages:

« Very simple to formulate and solve

« Once you know the projection matrix, can compute intrinsics

and extrinsics using matrix factorizations

Disadvantages?

» Doesn’t model radial distortion

* Hard to impose constraints (e.g., known focal length)

« Doesn’t minimize the right error function

For these reasons, nonlinear methods are preferred
« Define error function E between projected 3D points and image positions
— E is nonlinear function of intrinsics, extrinsics, radial distortion
« Minimize E using nonlinear optimization techniques
- e.g., variants of Newton’s method (e.g., Levenberg Marquart)

Alternative: Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
* Only requires a plane
« Don't have to know positions/orientations
» Good code available online!

— Zhengyou Zhang's web site: http: .microsoft.com/~zhang/Calib/

— Intel's OpenCV library: http://www.intel open

— Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

Summary

Things to take home from this lecture
* Homogeneous coordinates and their geometric intuition
* Homographies
« Points and lines in projective space
— projective operations: line intersection, line containing two points
— ideal points and lines (at infinity)
+ Vanishing points and lines and how to compute them
« Single view measurement
— within a reference plane
— height
 Cross ratio
» Camera calibration
— using vanishing points
— direct linear method




