
1

Announcements
• Add through registration system
• Project 1 is out today

– help session at the end of class

Image Segmentation

Today’s Readings
• Intelligent Scissors

From Sandlot Science

From images to objects

What Defines an Object?
• Subjective problem, but has been well-studied
• Gestalt Laws seek to formalize this

– proximity, similarity, continuation, closure, common fate
– see notes by Steve Joordens, U. Toronto

Extracting objects

How could this be done?

2

Image Segmentation
Many approaches proposed

• color cues
• region cues
• contour cues

We will consider a few of these
Today:

• Intelligent Scissors (contour-based)
– E. N. Mortensen and W. A. Barrett, Intelligent Scissors for Image

Composition, in ACM Computer Graphics (SIGGRAPH `95), pp. 191-
198, 1995

Intelligent Scissors

Intelligent Scissors
Approach answers a basic question

• Q: how to find a path from seed to mouse that follows object
boundary as closely as possible?

• A: define a path that stays as close as possible to edges

Intelligent Scissors
Basic Idea

• Define edge score for each pixel
– edge pixels have low cost

• Find lowest cost path from seed to mouse

seed

mouse

Questions
• How to define costs?
• How to find the path?

3

Path Search (basic idea)
Graph Search Algorithm

• Computes minimum cost path from seed to all other pixels

How does this really work?
Treat the image as a graph

Graph
• node for every pixel p
• link between every adjacent pair of pixels, p,q
• cost c for each link

Note: each link has a cost
• this is a little different than the figure before where each pixel

had a cost

p

q
c

• the link should follow the intensity edge
– want intensity to change rapidly ⊥ to the link

• c ≈ - |difference of intensity ⊥ to link|

Defining the costs
Treat the image as a graph

Want to hug image edges: how to define cost of a link?

p

q
c

Defining the costs

p

q
c

c can be computed using a cross-correlation filter
• assume it is centered at p

Also typically scale c by it’s length
• set c = (max-|filter response|) * length(c)

– where max = maximum |filter response| over all pixels in the image

4

Defining the costs

p

q
c

-1

1

-1-1

11

w

c can be computed using a cross-correlation filter
• assume it is centered at p

Also typically scale c by it’s length
• set c = (max-|filter response|) * length(c)

– where max = maximum |filter response| over all pixels in the image

Dijkstra’s shortest path algorithm

0
5
31

33

4 9

2

Algorithm
1. init node costs to ∞, set p = seed point, cost(p) = 0
2. expand p as follows:

for each of p’s neighbors q that are not expanded
» set cost(q) = min(cost(p) + cpq, cost(q))

link cost

Dijkstra’s shortest path algorithm

4

1 0

5

3

3 2 3

9

Algorithm
1. init node costs to ∞, set p = seed point, cost(p) = 0
2. expand p as follows:

for each of p’s neighbors q that are not expanded
» set cost(q) = min(cost(p) + cpq, cost(q))

» if q’s cost changed, make q point back to p
» put q on the ACTIVE list (if not already there)

5
31

33

4 9

2
11

Dijkstra’s shortest path algorithm

4

1 0

5

3

3 2 3

9

5
31

33

4 9

2
1

5
2

33

3 2

4

Algorithm
1. init node costs to ∞, set p = seed point, cost(p) = 0
2. expand p as follows:

for each of p’s neighbors q that are not expanded
» set cost(q) = min(cost(p) + cpq, cost(q))

» if q’s cost changed, make q point back to p
» put q on the ACTIVE list (if not already there)

3. set r = node with minimum cost on the ACTIVE list
4. repeat Step 2 for p = r

5

Dijkstra’s shortest path algorithm

3

1 0

5

3

3 2 3

6

5
31

33

4 9

2

4

3 1

4

5
2

33

3 2

4

Algorithm
1. init node costs to ∞, set p = seed point, cost(p) = 0
2. expand p as follows:

for each of p’s neighbors q that are not expanded
» set cost(q) = min(cost(p) + cpq, cost(q))

» if q’s cost changed, make q point back to p
» put q on the ACTIVE list (if not already there)

3. set r = node with minimum cost on the ACTIVE list
4. repeat Step 2 for p = r

Dijkstra’s shortest path algorithm

3

1 0

5

3

3 2 3

6

5
31

33

4 9

2

4

3 1

4

5
2

33

3 2

4

2

Algorithm
1. init node costs to ∞, set p = seed point, cost(p) = 0
2. expand p as follows:

for each of p’s neighbors q that are not expanded
» set cost(q) = min(cost(p) + cpq, cost(q))

» if q’s cost changed, make q point back to p
» put q on the ACTIVE list (if not already there)

3. set r = node with minimum cost on the ACTIVE list
4. repeat Step 2 for p = r

Dijkstra’s shortest path algorithm
Properties

• It computes the minimum cost path from the seed to every
node in the graph. This set of minimum paths is represented
as a tree

• Running time, with N pixels:
– O(N2) time if you use an active list
– O(N log N) if you use an active priority queue (heap)
– takes < second for a typical (640x480) image

• Once this tree is computed once, we can extract the optimal
path from any point to the seed in O(N/2) time.

– it runs in real time as the mouse moves
• What happens when the user specifies a new seed?

Results

demo

