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Image interpretation

We can represent a monochrome image as a matrix
I(z,y) of intensity values. The size of the matrix
is typically 512 x 512 and the intensity values are
usually sampled to an accuracy of 8 bits (256 grey
levels).

I(z,y) is a function of many variables, including:

1. The position of the camera;

2. The properties of the lens and the CCD;

3. The shape of the structures in the scene;

4. The nature and distribution of light sources;

5. The reflectance properties of the surfaces: specu-
lar <> Lambertian, albedo 0 (black) <> 1 (white).

Typically, we aim to deduce (1) and (3) from the im-
age, occasionally we are also interested in (5). We

generally want to deduce this information indepen-
dent of (2) and (4).
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Data reduction

With current computer technology, it is necessary
to discard most of the data coming from the cam-
era before any attempt is made at real-time image
interpretation.

images — generic salient features
12 MBytes/s 5 KBytes/s
(mono CCD)

All subsequent interpretation is performed on the
generic representation, not the original image. We
aim to:

e Dramatically reduce the amount of data.

e Preserve the useful information in the images
(such as the position of the camera and the shape
of objects in the scene).

e Discard the redundant information in the images
(such as the lighting conditions).

We would also like to arrive at a generic represen-
tation, so the same processing will be useful across
a wide range of applications.
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Salient features

The human visual system and the world of art give
us strong clues about what sort of processing is re-
quired. It seems possible to interpret images using
a small amount of edge and corner data.

The Archer, Henry Moore. Artist’s line drawing of The

8-bit greyscale image, 591 Archer. Perhaps 200 bytes
KBytes. of information.

Edges and corners can be matched in stereo views
or tracked over time to deduce the scene structure.
By making assumptions about the world, it is also
possible to successfully interpret single images con-
taining only edges.

But how can we automatically and efficiently extract
these features in images?
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Image structure Edges and corners
The answer becomes apparent if we look at the struc- 1D
ture of a typical image. In this photo of “Claire”, The patch containing the edge reveals an intensity
we’'ll examine the pixel data around several patches: discontinuity in one direction.

a featureless region, an edge and a corner.
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The patch containing the corner reveals an intensity
discontinuity in two directions.
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The featureless region is characterized by a smooth
variation of intensities.
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Note that an edge or corner representation imparts
a desirable invariance to lighting: the intensity dis-
continuities are likely to be prominent, whatever the
lighting conditions.
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1D edge detection

We start with the simple case of edge detection in
one dimension. When developing an edge detection
algorithm, it is important to bear in mind the invari-
able presence of image noise. Consider this signal
I(z) with an obvious edge.

Signal

1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

An intuitive approach to edge detection might be to
look for maxima and minima in I'(x).

Differentiated signal

Il Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000

This simple strategy is defeated by noise. For this
reason, all edge detectors start by smoothing the sig-
nal to suppress noise. The most common approach
is to use a Gaussian filter.
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1D edge detection

A broad overview of 1D edge detection is:

1. Convolve the signal I(x) with a Gaussian kernel
go(x). Call the smoothed signal s(z).

(2) 1 z?
o() = —F—exp|——
7 ov2r P\ 202
2. Compute §'(x), the derivative of s(z).

3. Find maxima and minima of §'(x).

4. Use thresholding on the magnitude of the ex-
trema to mark edges.

Sigma = 50
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
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1D edge detection

The smoothing in step (1) is performed by a 1D
convolution:

A

s(z) = go(z) x I(z) = [ g,(u)I(z — u) du
= [ g,(z — u)I(u) du

For discrete signals, the differentiation in step (2) is
also performed by a 1D convolution with the kernel
[1 —1]. Thus edge detection would appear to require
two computationally expensive convolutions.

However, the derivative theorem of convolution tells
us that
d

s'() = 90(2) * I(2)] = g;(z)  I()

so we can compute s'(z) by convolving only once —
a considerable computational saving.

J\

9o(x)  go()
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1D edge detection

Sigma = 50
T

Il Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000
T T
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| A
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Signal
T

Kernel
o

Convolution

Having obtained the convolved signal s'(x), interpo-
lation can be used to locate any maxima or minima
to sub-pixel accuracy. Finally, an edge is marked at
each maximum or minimum whose magnitude ex-
ceeds some threshold.

Looking for maxima and minima of () is the same
as looking for zero-crossings of s”(z). In many im-
plementations of edge detection algorithms, the sig-
nal is convolved with the Laplacian of a Gaussian,

9o(T):
§"(z) = gy () * ()
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Zero-crossings

Sigma = 50

i

Signal
I

Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Kernel

Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution
o
T
I

Il Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000

The zero-crossings of s”(x) mark possible edges.

We have not yet addressed the issue of what value
of o to use. Consider this signal:

Signal

Il Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Does the signal have one positive edge or a number
of positive and negative edges?

Image Structure

11

Multi-scale edge detection

Using a small o brings out all the edges.
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As o increases, the signal is smoothed

more, and only the central edge survives.
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Multi-scale edge detection

The amount of smoothing controls the scale at which
we analyse the image. There is no right or wrong
size for the Gaussian kernel: it all depends on the
scale we're interested in.

Modest smoothing (a Gaussian kernel with small o)
brings out edges at a fine scale. More smoothing
(larger o) identifies edges at larger scales, suppress-
ing the finer detail.

This is an image of a dish cloth.
After edge detection, we see
different features at different
scales.

Fine scale edge detection is particularly sensitive to
noise. This is less of an issue when analysing images
at coarse scales.

Image Structure 13

2D edge detection

The 1D edge detection scheme can be extended to
work in two dimensions. First we smooth the image
I(z,y) by convolving with a 2D Gaussian G, (z,y):

1 z? + 1)
Gular) = 5y e [T

S(:B,y) - Ga(fﬂay)*l(fﬁ,y)
= %o oo Go(u, v) (2 — u,y — v) du dv

The effects of this blurring on a typical image:

Unsmoothed o = 3 pixels o = 4 pixels
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2D edge detection

The next step is to find the gradient of the smoothed
image S(z,y) at every pixel:

A

VS = V(G, * I)
0(Gg*I) 0G4
. ox . Oz * 1
1 0GexD) || 9G,
" i I

W
i
7NN
NS
RSN 77

':n
AR
%

8G0(37,y)_ —Z ex _(
or - 2not b

2+ y2
202

The following example shows |V.S| for a fruity im-

age:
‘ =
0

(a) Original image (b) Edge strength |V S|
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2D edge detection

The next stage of the edge detection algorithm is
non-maximal suppression. Edge elements, or
edgels, are placed at locations where |V.S| is greater
than local values of |V.S| in the directions £V .S.
This aims to ensure that all edgels are located at
ridge-points of the surface |V S|.

(c) Non-maximal suppression

Next, the edgels are thresholded, so that only
those with |V S| above a certain value are retained.
Finally, weak edgels, which have been deleted, are
revived if they span gaps between strong edgels, in
a process known as hysteresis.

(d) Thresholding with hysteresis
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2D edge detection

The edge detection algorithm we have been describ-
ing is due to Canny (1986). The output is a list of
edgel positions, each with a strength |V.S| and an
orientation V.S/ |V.S].

An alternative approach to edge detection was devel-
oped by Marr and Hildreth (1980). While the Canny
detector is a directional edge finder (both the gra-
dient magnitude and direction are computed), the
Marr-Hildreth operator is isotropic. It finds zero-
crossings of V2G,, * I, where V2@, is the Lapla-
cian of G, (V* = §%/9z* + 8*/0y?).
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Implementation details

In practice, the image and filter kernels are discrete
quantities and the convolutions are performed as
truncated summations:

S(z,y) = DS Go(u,v)(z —u,y —v)

u=—-nov=-n
/N

g,()

Ak

[ [ lo] [¥]n]

2n+1 pixel filter kernel

For acceptable accuracy, kernels are generally trun-
cated so that the discarded samples are less than
1/1000 of the peak value.

o 151316
2n+ 1] 11|23 /45

The 2D convolutions would appear to be computa-
tionally expensive. However, they can be decom-
posed into two 1D convolutions:

Go(z,y) * 1(x,y) = go(x) * [90(y) * I(2,y)]
The computational saving is (2n + 1)2/2(2n + 1).
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Corners

While edges are a powerful intermediate representa-
tion, they are sometimes insufficient. This is espe-
cially the case when image motion is being analysed.
The motion of an edge is rendered ambiguous by the
aperture problem: when viewing a moving edge,
it is only possible to measure the motion normal to
the edge.

Edge Corner

To measure image motion completely, we really need
to look at corner features. We saw earlier that a
corner is characterized by an intensity discontinuity
in two directions. This discontinuity can be detected
using correlation.
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Correlation

The normalized cross-correlation function measures
how well an image patch P matches other portions
of the image as it is shifted from its original loca-
tion. It entails sliding the patch over the image,
computing the sum of the products of the pixels and
normalizing the result:

n n

> Y Pu,v)I(z+u,y+v)

=—Nv=—"n

c(z,y) ="

J _%_ % 12(:1:+u,y+v)

A patch which has a well-defined peak in its corre-
lation function can be classified as a “corner”.

[l

Image & patch Correlation
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Corner detection

A practical corner detection algorithm needs to do
something more efficient than calculate correlation
functions for every pixel!

1. Calculate change in intensity in direction n:

I, = Vi(z,y)a=[I, I,]".a

n’ VIVITn
n’n
2 LI,
LI, I? ]
n’n
where I, = 01 /0z and I, = 01/0y.

2. Smooth 1% by convolution with a Gaussian ker-
nel:

4

I =

n

T

Cu(z,y) = Golz,y) * I

(1Z) (La1y) ]

n

(1) (1)
n’n

where ( ) is the smoothed value.

nT
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Corner detection

The smoothed change in intensity around (z,y) in
direction n is therefore given by

n’An

n‘n

Cnlz,y) =
where A is the 2 x 2 matrix
(I3) (L.1,)
(LI,) (I})

Elementary eigenvector theory tells us that

A < Cu(z,y) < Ao

where A1 and Ay are the eigenvalues of A. So, if
we try every possible orientation n, the maximum
smoothed change in intensity we will find is A, and
the minimum value is A;.

We can therefore classify image structure around
each pixel by looking at the eigenvalues of A:
No structure: (smooth variation) A\; &~ Ay &~ 0

1D structure: (edge) A\; = 0 (direction of edge),
Ao large (normal to edge)

2D structure: (corner) A; and Ay both large and
distinct
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Corner detection

The corner detection algorithm we have been de-
scribing is due to Harris (1987). It is necessary to
calculate A at every pixel and mark corners where
the quantity A Ao — k(A1 +A2)? exceeds some thresh-
old (k = 0.04 makes the detector a little “edge-
phobic”). Note that det A = A\jAy and trace A=
A1+ As.

Low threshold High threshold

Corners are most useful for tracking in image se-
quences or matching in stereo pairs. Unlike edges,
the displacement of a corner is not ambiguous. Cor-
ner detectors must be judged on their ability to de-
tect the same corners in similar images. Current
detectors are not too reliable, and higher-level vi-
sual routines must be designed to tolerate a signifi-
cant number of outliers in the output of the corner
detector.
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Algebraic edge representations

Compared with raw images, edgel representations
offer significant data reduction while preserving most
of the useful image structure. However, they are
not as compact a representation as they could be
(a typical image will generate thousands of edgels),
and current edge detection algorithms often produce
fragmented edgel chains along strong edges.

/\///\\/

Q(s) = [x(s) y(s)]" List of edgels
O<s<1 (position & orientation)
Compact representation Inefficient representation
Smooth Fragmented

An alternative approach is to attempt to automati-
cally fit an algebraic, parameterized curve to an edge
of interest. The representation is now extremely
compact (only the coefficients of the curve’s equa-
tion need be stored) and continuity of the edge is
implicit.
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B-splines

A natural choice for the curve parameterization is
the B-spline, which is widely used in computer
graphics. A cubic B-spline is specified by m + 1
control points pg, p; .. .Pp,, and comprises m —
2 cubic polynomial curve segments Q3, Q... Q,,.
The joining points between each curve segment are
known as knots. The equation of each curve seg-
ment 18

_lis o 3—6 30||pPis
Q;(s) _6[8 s° s 1] 3 0 30| p,
1 4 10]|p;

for0<s<land3<i<m.

y(t)

P
5 ® Knot

¢
P, + Control point
» x(1)
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Properties of B-splines

B-splines are ideal for fitting to image edges. They
may be open or closed as required, and are defined
with continuity properties at each knot. The flexi-
bility of the curve increases as more control points
are added: each additional control point allows one
more inflection. It is also possible to use multiple
knots to reduce the continuity at knots.

What makes B-splines especially suited to edge fit-
ting is that they exhibit local control: modifying
the position of one control point causes only a small
part of the curve to change.

P*,Curve

P, Curve

/
Pe ® Knot
& Control point

> x(f)
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Active contours — “Snakes”

B-splines can be fitted to image edges using a tech-
nique called active contours or snakes.

1. Initialise the B-spline near the edge.

2. Select a number of evenly spaced sample points
along the B-spline.

3. From each sample point, search normal to the
spline for an edge in the image (using standard
edge detection techniques).

Image Control points

Sample
points

Applied
forces

Snake

P
3

4. Apply an elastic “force” at each sample point,
proportional to the distance to the edge.
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Active contours — “Snakes”

5. Calculate the elastic energy E(I(z,y), Q) asso-
ciated with the forces.

6. Move the control points to minimize E (least
squares).

7. Repeat from (3).

The algorithm converges to produce a spline which
closely follows the edge in the image.

By running the algorithm continuously, if the edge
moves, then the spline moves with it. Thus we have
an extremely useful contour tracker. Tracking
curves in image sequences allows us to reconstruct
shape from contour, or estimate time to contact for
navigation or visual docking.

Contour ...

tracking Docking and grasping
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