Announcements

Project 1

- Sign up for your demo slot! (demos Thursday afternoon)
- http://www.cs.washington.edu/htbin-post/admin/preserve.cgi/www/education/reserve/cse455/demo1

Project 2 (panoramas)

- Think about who you want to partner with
- Then sign up via the "grouper" tool:
. http://norfolk.cs.washington.edu/htbin-php/grouper/grouper.php?course=CSE455\&assignment=1
- Sign up by TODAY

Advantages of local features

Locality

- features are local, so robust to occlusion and clutter

More motivation...

Feature points are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

Want uniqueness

Look for image regions that are unusual

- Lead to unambiguous matches in other images

How to define "unusual"?

Local measures of uniqueness

Suppose we only consider a small window of pixels

- What defines whether a feature is a good or bad candidate?

Feature detection

Local measure of feature uniqueness

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Feature detection: the math

Consider shifting the window W by (u, v)

- how do the pixels in \mathbf{W} change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" of $E(u, v)$:

$E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2}$

Feature detection: the math

Consider shifting the window W by (u, v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences
- this defines an "error" of $E(u, v)$:

$$
\begin{aligned}
& E(u, v)=\sum_{(x, y) \in W}[I(x+u, y+v)-I(x, y)]^{2} \\
& \approx \sum_{(x, y) \in W}\left[I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]-I(x, y)\right]^{2} \\
& \approx \sum_{(x, y) \in W}\left[\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]\right]^{2}
\end{aligned}
$$

Small motion assumption

Taylor Series expansion of I:
$I(x+u, y+v)=I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v+$ higher order terms
If the motion (u, v) is small, then first order approx is good
$I(x+u, y+v) \approx I(x, y)+\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v$

$$
\approx I(x, y)+\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

$$
\text { shorthand: } I_{x}=\frac{\partial I}{\partial x}
$$

Plugging this into the formula on the previous slide...

Feature detection: the math

This can be rewritten:
$E(u, v)=\sum_{(x, y) \in W}[u v] \underbrace{\left[\begin{array}{cc}I_{x}^{2} & I_{x} I_{y} \\ I_{y} I_{x} & I_{y}^{2}\end{array}\right]}_{H}\left[\begin{array}{l}u \\ v\end{array}\right]$

For the example above

- You can move the center of the green window to anywhere on the blue unit circle
- Which directions will result in the largest and smallest E values?
- We can find these directions by looking at the eigenvectors of \boldsymbol{H}

Quick eigenvalue/eigenvector review

The eigenvectors of a matrix \mathbf{A} are the vectors \mathbf{x} that satisfy

$$
A x=\lambda x
$$

The scalar λ is the eigenvalue corresponding to \mathbf{x}

- The eigenvalues are found by solving:

$$
\operatorname{det}(A-\lambda I)=0
$$

- In our case, $\boldsymbol{A}=\boldsymbol{H}$ is a 2×2 matrix, so we have

$$
\operatorname{det}\left[\begin{array}{cc}
h_{11}-\lambda & h_{12} \\
h_{21} & h_{22}-\lambda
\end{array}\right]=0
$$

- The solution:

$$
\lambda_{ \pm}=\frac{1}{2}\left[\left(h_{11}+h_{22}\right) \pm \sqrt{4 h_{12} h_{21}+\left(h_{11}-h_{22}\right)^{2}}\right]
$$

Once you know λ, you find \mathbf{x} by solving

$$
\left[\begin{array}{cc}
h_{11}-\lambda & h_{12} \\
h_{21} & h_{22}-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=0
$$

Feature detection: the math
This can be rewritten:

$$
E(u, v)=\sum_{(x, y) \in W}\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{y} I_{x} & I_{y}^{2}
\end{array}\right]}_{H}\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Eigenvalues and eigenvectors of H

- Define shifts with the smallest and largest change (E value)
- $\mathrm{x}_{+}=$direction of largest increase in E
$\lambda_{+}=$amount of increase in direction $\mathrm{x} \quad H x_{+}=\lambda_{+} x_{+}$
- $x=$ direction of smallest increase in E.
- λ - = amount of increase in direction x

Feature detection: the math

How are $\lambda_{+}, \mathbf{x}_{+}, \lambda_{-}$, and \mathbf{x}_{+}relevant for feature detection?

- What's our feature scoring function?

Feature detection: the math
How are $\lambda_{+}, \mathbf{x}_{+}, \lambda_{-}$, and \mathbf{x}_{+}relevant for feature detection?

- What's our feature scoring function?

Want $E(u, v)$ to be large for small shifts in all directions

- the minimum of $E(u, v)$ should be large, over all unit vectors [u v]
- this minimum is given by the smaller eigenvalue $\left(\lambda_{)}\right)$of H

λ_{+}

Feature detection summary
Here's what you do

- Compute the gradient at each point in the image
- Create the \boldsymbol{H} matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response ($\lambda_{_}>$threshold)
- Choose those points where λ _ is a local maximum as features

The Harris operator

λ_{-}is a variant of the "Harris operator" for feature detection

$$
\begin{aligned}
& f=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
= & \frac{\operatorname{determinant}(H)}{\operatorname{trace}(H)}
\end{aligned}
$$

- The trace is the sum of the diagonals, i.e., $\operatorname{trace}(H)=h_{11}+h_{22}$
- Very similar to λ _ but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

Find local maxima of f

Scale invariant detection

Suppose you're looking for corners

Key idea: find scale that gives local maximum of f

- f is a local maximum in both position and scale

Feature descriptors

We know how to detect good points Next question: How to match them?

Lots of possibilities (this is a popular research area)

- Simple option: match square windows around the point
- State of the art approach: SIFT
- David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

Invariance

Suppose we are comparing two images I_{1} and I_{2}

- I_{2} may be a transformed version of I_{1}
- What kinds of transformations are we likely to encounter in practice?

Invariance

Suppose we are comparing two images I_{1} and I_{2}

- I_{2} may be a transformed version of I_{1}
- What kinds of transformations are we likely to encounter in practice?

We'd like to find the same features regardless of the transformation

- This is called transformational invariance
- Most feature methods are designed to be invariant to - Translation, 2D rotation, scale
- They can usually also handle
- Limited 3D rotations (SIFT works up to about 60 degrees)
- Limited affine transformations (some are fully affine invariant)
- Translation, 2D rotation, scale

How to achieve invariance

Need both of the following:

1. Make sure your detector is invariant

- Harris is invariant to translation and rotation
- Scale is trickier
- common approach is to detect features at many scales using a Gaussian pyramid (e.g., MOPS)
- More sophisticated methods find "the best scale" to represent each feature (e.g., SIFT)

2. Design an invariant feature descriptor

- A descriptor captures the information in a region around the detected feature point
- The simplest descriptor: a square window of pixels - What's this invariant to?
- Let's look at some better approaches...

Rotation invariance for feature descriptors

Find dominant orientation of the image patch

- This is given by \mathbf{x}_{+}, the eigenvector of \mathbf{H} corresponding to λ_{+} $-\lambda_{+}$is the larger eigenvalue
- Rotate the patch according to this angle

Figure by Matthew Brown

Multiscale Oriented PatcheS descriptor

Take 40×40 square window around detected feature

- Scale to $1 / 5$ size (using prefiltering)

Rotate to horizontal

- Sample 8×8 square window centered at feature
- Intensity normalize the window by subtracting the mean, dividing by

Detections at multiple scales

Figure I. Multi-scale Oriented Patches (MOPS) exracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

Scale Invariant Feature Transform

Basic idea:

- Take 16×16 square window around detected feature
- Compute edge orientation (angle of the gradient - 90°) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations

Adapted from slide by David Lowe

SIFT descriptor

Full version

- Divide the 16×16 window into a 4×4 grid of cells (2×2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations $=128$ dimensional descriptor

Feature matching

Given a feature in I_{1}, how to find the best match in I_{2} ?

1. Define distance function that compares two descriptors
2. Test all the features in I_{2}, find the one with min distance

Feature distance
How to define the difference between two features f_{1}, f_{2} ?

- Simple approach is $\operatorname{SSD}\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)$
- sum of square differences between entries of the two descriptors
- can give good scores to very ambiguous (bad) matches

Lots of applications

Features are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other

