Image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

.

Image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

2

Reading

Forsyth & Ponce, chapter 8 (in reader)

3

What is an image?

Images as functions

We can think of an **image** as a function, f, from R^2 to R:

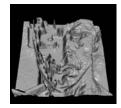
- f(x, y) gives the **intensity** at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,1]$

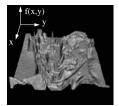
A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

5

Images as functions





6

What is a digital image?

In computer vision we usually operate on **digital** (**discrete**) images:

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:

$$f[i,j] = Quantize\{ f(i \Delta, j \Delta) \}$$

The image can now be represented as a matrix of integer values

7

Image processing

An **image processing** operation typically defines a new image g in terms of an existing image f.

We can transform either the domain or the range of f.

Range transformation:

$$g(x,y) = t(f(x,y))$$

What's kinds of operations can this perform?

Image processing

Some operations preserve the range but change the domain of f:

$$g(x,y) = f(t_x(x,y), t_y(x,y))$$

What kinds of operations can this perform?

Image processing

Still other operations operate on both the domain and the range of f.

Noise

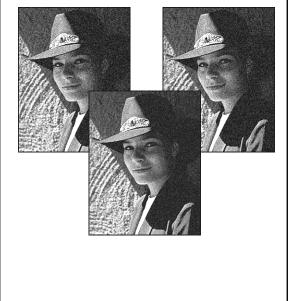
Image processing is useful for noise reduction...

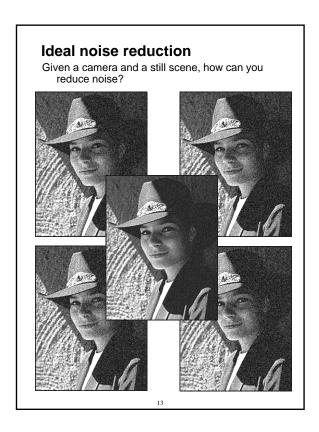
Common types of noise:

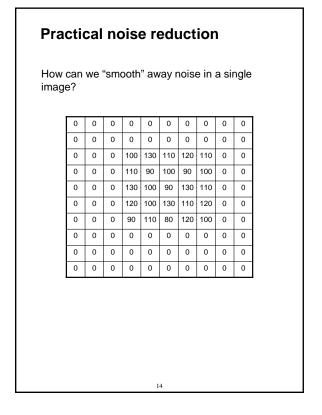
- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

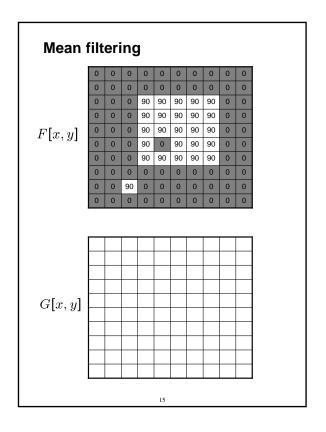
Ideal noise reduction

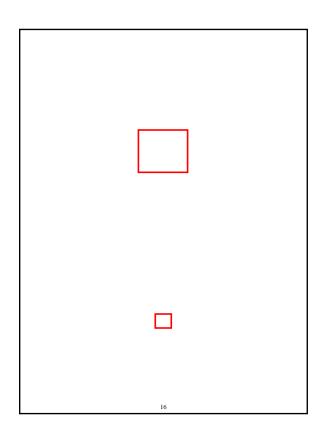
Given a camera and a still scene, how can you reduce noise?











Mean filtering 90 | 90 | 90 | 90 | 90 0 0 90 90 90 90 90 0 0 0 90 90 90 90 90 F[x, y]0 0 0 90 0 90 90 90 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 0 0 0 0 10 20 30 30 30 20 20 40 60 60 60 40 20 30 60 90 90 90 60 30 30 50 80 80 90 60 30 G[x,y]30 50 80 80 90 60 30 20 30 50 50 60 40 20 20 30 30 30 30 20 10 10 10 10 0 0 0 0

Effect of mean filters



Cross-correlation filtering

Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

We can generalize this idea by allowing different weights for different neighboring pixels:

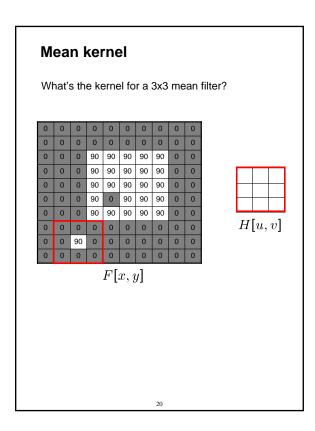
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation and written:

$$G = H \otimes F$$

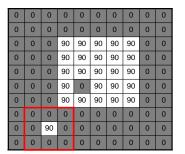
H is called the "filter," "kernel," or "mask."

The above allows negative filter indices. When you implement need to use: H[u+k,v+k] instead of H[u,v]



Gaussian Filtering

A Gaussian kernel gives less weight to pixels further from the center of the window



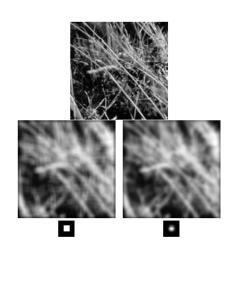
This kernel is an approximation of a Gaussian function:

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

What happens if you increase $\boldsymbol{\sigma}$?

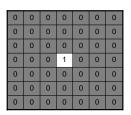
21

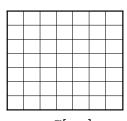
Mean vs. Gaussian filtering



22

Filtering an impulse





G[x,y]

23

Convolution

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written: $G = H \star F$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Suppose F is an impulse function (previous slide) What will G look like?

Continuous Filters

We can also apply filters to continuous images.

In the case of cross correlation: $g = h \otimes f$

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x+u,y+v) du dv$$

In the case of convolution: $g = h \star f$

$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u,v) f(x-u,y-v) du dv$$

Note that the image and filter are infinite.

25

Median filters

A **Median Filter** operates over a window by selecting the median intensity in the window.

What advantage does a median filter have over a mean filter?

Is a median filter a kind of convolution?

