Announcements

- Reader is in the BOOK STORE (not Comm Bldg.)
- Mailing list: cse455@cs.washington.edu
 - you should have received messages
- Office hours <u>online</u>
 - start next week
 - » this week: by appt. only
- Project 1 out today (due in two weeks)
 - posted on course web page
 - help session today
- Your ID card should open Sieg 327
 - check to make sure ASAP

Image Scissors

Aging Helen Mirren

Today's Readings

• Intelligent Scissors, Mortensen et. al, SIGGRAPH 1995

Extracting objects

How could this be done?

- hard to do manually
- hard to do automatically ("image segmentation")
- easy to do semi-automatically

Intelligent Scissors (demo)

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions $(t_0, t_1, \text{ and } t_2)$ are shown in green.

Intelligent Scissors

Approach answers a basic question

- Q: how to find a path from seed to mouse that follows object boundary as closely as possible?
- A: define a path that stays as close as possible to edges

Figure 2: Image demonstrating how the live-wire segment adapts and snaps to an object boundary as the free point moves (via cursor movement). The path of the free point is shown in white. Live-wire segments from previous free point positions $(t_0, t_1, and t_2)$ are shown in green.

Intelligent Scissors

Basic Idea

- Define edge score for each pixel
 - edge pixels have low cost
- · Find lowest cost path from seed to mouse

Questions

- · How to define costs?
- · How to find the path?

Intelligent Scissors

Basic Idea

- Define edge score for each pixel
 - edge pixels have low cost
- · Find lowest cost path from seed to mouse

Questions

- · How to define costs?
- How to find the path?

Path Search (basic idea)

Graph Search Algorithm

• Computes minimum cost path from seed to all other pixels

Path Search (basic idea)

Graph Search Algorithm

• Computes minimum cost path from seed to all other pixels

Path Search (basic idea)

Let's look at this more closely

Treat the image as a graph

Graph

- node for every pixel p
- link between every adjacent pair of pixels, p,q
- cost c for each link

Note: each link has a cost

• this is a little different than the figure before where each pixel had a cost

Defining the costs

Want to hug image edges: how to define cost of a link?

• the link should follow the intensity edge

Defining the costs

Want to hug image edges: how to define cost of a link?

- the link should follow the intensity edge
 - want intensity to change rapidly $oldsymbol{\perp}$ to the link
- $c \approx -\frac{1}{\sqrt{2}}$ |intensity of r intensity of s|

Defining the costs

c can be computed using a cross-correlation filter

assume it is centered at p

A couple more modifications

- Scale the filter response by length of link c. Why?
- Make c positive
 - Set c = (max-|filter response|*length)
 - where max = maximum |filter response|*length over all pixels in the image

Defining the costs

c can be computed using a cross-correlation filter

assume it is centered at p

A couple more modifications

- Scale the filter response by length of link c. Why?
- Make c positive
 - Set c = (max-|filter response|*length)
 - where max = maximum |filter response|*length over all pixels in the image

Dijkstra's shortest path algorithm

Algorithm

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:

for each of $p\sp{'}s$ neighbors q that are not expanded

» set $cost(q) = min(cost(p) + c_{pq}, cost(q))$

Dijkstra's shortest path algorithm

Algorithm

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:

for each of p's neighbors q that are not expanded

- » set cost(q) = min(cost(p) + c_{pq}, cost(q))
 » if q's cost changed, make q point back to p
- put q on the ACTIVE list (if not already there)

Dijkstra's shortest path algorithm

Algorithm

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:

for each of p's neighbors q that are not expanded

- » set cost(q) = min(cost(p) + c_{pq}, cost(q))
 - » if q's cost changed, make q point back to p
- » put q on the ACTIVE list (if not already there)
- 3. set r = node with minimum cost on the ACTIVE list
- 4. repeat Step 2 for p = r

Dijkstra's shortest path algorithm

Algorithm

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:

for each of p's neighbors q that are not expanded

- » set $cost(q) = min(cost(p) + c_{pq}, cost(q))$
- » if a's cost changed, make a point back to p » put q on the ACTIVE list (if not already there)
- 3. set r = node with minimum cost on the ACTIVE list
- 4. repeat Step 2 for p = r

Dijkstra's shortest path algorithm

Properties

- It computes the minimum cost path from the seed to every node in the graph. This set of minimum paths is represented
- Running time, with N pixels:
 - O(N2) time if you use an active list
 - O(N log N) if you use an active priority queue (heap)
 - takes fraction of a second for a typical (640x480) image
- · Once this tree is computed once, we can extract the optimal path from any point to the seed in O(N) time.
 - it runs in real time as the mouse moves
- What happens when the user specifies a new seed?

Results

Jason Dang

 $\underline{\text{http://www.cs.washington.edu/education/courses/455/08wi/projects/project1/artifacts/index.html}$

Help session—Ryan