Global Alignment and Structure from Motion

Computer Vision CSE455, Winter 2008 Noah Snavely

Readings

- Snavely, Seitz, Szeliski, Photo Tourism: Exploring Photo Collections in 3D. SIGGRAPH 2006. http://phototour.cs.washington.edu/Photo_Tourism.pdf
- Supplementary reading: Szeliski and Kang. Recovering 3D shape and motion from image streams using non-linear least squares. J. Visual Communication and Image Representation, 1993.

http://hpl.hp.com/techreports/Compaq-DEC/CRL-93-3.pdf

- Instead of spherically warping the images and solving for translation, we can directly solve for the rotation ${\bf R}_{\rm i}$ of each camera
- Can handle tilt / twist

3D rotations

- How many degrees of freedom are there?
- How do we represent?
 - Rotation matrix (too many degrees of freedom)
 - Euler angles (e.g. yaw, pitch, and roll)
 - Quaternions (4-vector on unit sphere)
- Usually involves non-linear optimization

- Structure from motion (SfM)
- Unlike with panoramas, we often need to solve for *structure* (3D point positions) as well as *motion* (camera parameters)

Solving structure from motion

- Minimizing g is difficult:
 - g is non-linear due to rotations, perspective division
 - lots of parameters: 3 for each 3D point, 6 for each camera
 - difficult to initialize
 - gauge ambiguity: error is invariant to a similarity transform (translation, rotation, uniform scale)
- Many techniques use non-linear least-squares (NLLS) optimization (bundle adjustment)
 - Levenberg-Marquardt is one common algorithm for NLLS
 - Lourakis, The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm, <u>http://www.ics.forth.gr/~lourakis/sba/</u>
 - <u>http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm</u>

Photo Tourism

• Structure from motion on Internet photo collections

Feature matching

Problem size

- Trevi Fountain collection 466 input photos
 + > 100,000 3D points
 - = very large optimization problem

Photo Tourism overview

-			76.18 × · · · · · · · · ·
	A		and the second
		J.	

- If K is not known, then we use a related matrix called the *Fundamental matrix*, F
 Called the *uncalibrated* case
- $\mathbf{F} = \mathbf{K}^{-T} \mathbf{E} \mathbf{K}^{-1}$
- F can be solved for linearly with eight points, or non-linearly with six or seven points

More information

- Paper: "Photo Tourism: Exploring photo collections in 3D," http://phototour.cs.washington.edu/Photo_Tourism.pdf
- <u>http://phototour.cs.washington.edu</u>
- http://labs.live.com/photosynth