Global Alignment and
 Structure from Motion

Computer Vision
CSE455, Winter 2008
Noah Snavely

Readings

- Snavely, Seitz, Szeliski, Photo Tourism: Exploring Photo Collections in 3D. SIGGRAPH 2006.
http://phototour.cs.washington.edu/Photo Tourism.pdf
- Supplementary reading:

Szeliski and Kang. Recovering 3D shape and motion from image streams using non-linear least squares. J. Visual Communication and Image Representation, 1993.
http://hpl.hp.com/techreports/Compaq-DEC/CRL-93-3.pdf

Global optimization

- Minimize a global energy function:
- What are the variables?
- The translation $t_{i}=\left(x_{j}, y_{j}\right)$ for each image
- What is the objective function?
- We have a set of matched features $p_{\mathrm{i}, \mathrm{j}}=\left(u_{\mathrm{i}, \mathrm{j}}, v_{\mathrm{i}, \mathrm{j}}\right)$
- For each point match $\left(p_{i, j}, p_{\mathrm{i}, \mathrm{j}+1}\right)$:

$$
p_{\mathrm{i}, \mathrm{j}+1}-p_{\mathrm{i}, \mathrm{j}}=t_{\mathrm{j}+1}-t_{\mathrm{j}}
$$

Global optimization

$p_{1,2}-p_{1,1}=t_{2}-t_{1}$
$p_{1,3}-p_{1,2}=t_{3}-t_{2}$
$p_{2,3}-p_{2,2}=t_{3}-t_{2}$
\ldots
$v_{4,1}-v_{4,4}=y_{1}-y_{4}$

$\begin{aligned} &$$$
\sum_{i=1}^{m}
$$$\sum_{j=1}^{\text {minimize }} w_{i j} \cdot\left\|\left(p_{i, j+1}-p_{i, j}\right)-\left(t_{j+1}-t_{j}\right)\right\|^{2} \\ &+\sum_{i=1}^{m} w_{i j} \cdot\left\|\left(v_{i, n}-v_{i, 1}\right)-\left(y_{n}-y_{1}\right)\right\|^{2} \\ & 0 \text { otherwise }\end{aligned}$

Global optimization

Global optimization

Defines a least squares problem: minimize $\|\mathbf{A x}-\mathbf{b}\|$

- Solution: $\hat{\mathbf{x}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}$
- Problem: there is no unique solution for $\hat{\mathbf{X}}!\left(\operatorname{det}\left(\mathbf{A}^{T} \mathbf{A}\right)=0\right)$
- We can add a global offset to a solution $\hat{\mathbf{x}}$ and get the same error

Ambiguity in global location

(200,-200)

- Each of these solutions has the same error
- Called the gauge ambiguity
- Solution: fix the position of one image (e.g., make the origin of the $1^{\text {st }}$ image $(0,0)$)

Solving for camera parameters

Recap: a camera is described by several parameters

- Translation t of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point ($x_{c}^{\prime}, y_{c}^{\prime}$), pixel size $\left(s_{x}, s_{y}\right)$
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
p=\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
-f s_{x} & 0 & x_{c}^{\prime} \\
0 & -f s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]}_{\mathbf{K}}\left(\mathbf{R}_{3,3} \mathbf{X}+\mathbf{t}_{3 x 1}\right)
$$

Solving for camera rotation

- Instead of spherically warping the images and solving for translation, we can directly solve for the rotation \mathbf{R}_{j} of each camera
- Can handle tilt / twist

Solving for rotations

Solving for rotations

$\mathbf{R}_{1} p_{11} \cong \mathbf{R}_{2} p_{12}$
$\mathbf{R}_{1} \hat{p}_{11}=\mathbf{R}_{2} \hat{p}_{12}$
minimize $\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\left\|\mathbf{R}_{j+1} \hat{p}_{i_{j+1}}-\mathbf{R}_{j} \hat{p}_{\hat{l}_{i j}}\right\|^{2}$

3D rotations

- How many degrees of freedom are there?
- How do we represent?
- Rotation matrix (too many degrees of freedom)
- Euler angles (e.g. yaw, pitch, and roll)
- Quaternions (4-vector on unit sphere)
- Usually involves non-linear optimization

Solving for rotations and translations

- Structure from motion (SfM)
- Unlike with panoramas, we often need to solve for structure (3D point positions) as well as motion (camera parameters)

Structure from motion

- Input: images with points in correspondence $p_{i, j}=\left(u_{i, j}, v_{i, j}\right)$
- Output
- structure: 3D location \mathbf{x}_{i} for each point p_{i}
- motion: camera parameters $\mathbf{R}_{j}, \mathbf{t}_{j}$
- Objective function: minimize reprojection error

SfM objective function

- Given point \mathbf{x} and rotation and translation \mathbf{R}, \mathbf{t}

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\mathbf{R x}+\mathbf{t} \begin{aligned}
& u^{\prime}=\frac{f x^{\prime}}{z^{\prime}} \\
& v^{\prime}=\frac{f y^{\prime}}{z^{\prime}}
\end{aligned} \quad\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\mathbf{P}(\mathbf{x}, \mathbf{R}, \mathbf{t})
$$

- Minimize sum of squared reprojection errors:

$$
g(\mathbf{X}, \mathbf{R}, \mathbf{T})=\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} \cdot\|\underbrace{\| \mathbf{P}\left(\mathbf{x}_{i}, \mathbf{R}_{j}, \mathbf{t}_{j}\right)}_{\begin{array}{c}
\text { predicted } \\
\text { image location }
\end{array}}-\underbrace{\left[\begin{array}{l}
u_{i, j} \\
v_{i, j}
\end{array}\right]}_{\substack{\text { observed } \\
\text { imagelocation }}}\|^{2}
$$

Solving structure from motion

- Minimizing g is difficult:
- g is non-linear due to rotations, perspective division
- lots of parameters: 3 for each 3D point, 6 for each camera
- difficult to initialize
- gauge ambiguity: error is invariant to a similarity transform (translation, rotation, uniform scale)
- Many techniques use non-linear least-squares (NLLS) optimization (bundle adjustment)
- Levenberg-Marquardt is one common algorithm for NLLS
- Lourakis, The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the LevenbergMarquardt Algorithm, http://www.ics.forth.gr/~lourakis/sba/
- http://en.wikipedia.org/wiki/Levenberg-Marquardt algorithm

Scene reconstruction

Photo Tourism

- Structure from motion on Internet photo collections

Incremental structure from motion

Problem size

- Trevi Fountain collection

466 input photos

+ > 100,000 3D points
= very large optimization problem

Annotations

Two-view structure from motion

- Simpler case: can consider motion independent of structure

$$
p=\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\underbrace{\substack{-f s_{s} \\
0 \\
0 \\
0 \\
0 \\
0 \\
s_{s} \\
x_{c}^{\prime} \\
y_{c}^{\prime} \\
\hline}}_{\mathbf{K}}]\left(\mathbf{R}_{s u \mathbf{x}} \mathbf{X}+\mathbf{t}_{s u}\right)
$$

- Let's first consider the case where \mathbf{K} is known
- Each image point ($u_{\mathrm{i}, \mathrm{j}}, v_{\mathrm{i}, \mathrm{j}}, 1$) can be multiplied by K^{-1} to form a 3D ray
- We call this the calibrated case

Notes on two-view geometry

- How can we express the epipolar constraint?
- Answer: there is a 3×3 matrix \mathbf{E} such that

$$
p^{\prime T} \mathrm{E} p=0
$$

- \mathbf{E} is called the essential matrix

Properties of the essential matrix

- $p^{\top} \mathrm{E} p=0$
- Ep is the epipolar line associated with p
- e and e^{\prime} are called epipoles: $\mathbf{E} e=\mathbf{0}$ and $\mathbf{E}^{\top} e^{\prime}=\mathbf{0}$
- E can be solved for with 5 point matches
- see Nister, An efficient solution to the five-point relative pose problem. PAMI 2004.

The Fundamental matrix

- If \mathbf{K} is not known, then we use a related matrix called the Fundamental matrix, \mathbf{F}
- Called the uncalibrated case
- $\mathbf{F}=\mathbf{K}^{-\boldsymbol{T}} \mathbf{E} \mathbf{K}^{-1}$
- F can be solved for linearly with eight points, or non-linearly with six or seven points

More information

- Paper: "Photo Tourism: Exploring photo collections in 3D," http://phototour.cs.washington.edu/Photo_Tourism.pdf
- http://phototour.cs.washington.edu
- http://labs.live.com/photosynth

