Computer Vision

CSE 455
 Image Coordinates and Resizing

Linda Shapiro
Professor of Computer Science \& Engineering
Professor of Electrical Engineering

What is an image?

Eyes: projection onto retina

Model: pinhole camera

Model: pinhole camera

At each point we record incident light

An image is a matrix of light

Values in matrix = how much light

$\begin{array}{llll} & \\ 0 & 1 & \text { Columns } \\ 0 & 6 \end{array}$													
	100			102	121								
	${ }_{100}$	102	187	102	132	14613	136150	15	${ }_{182}^{12}$			104105	
2	${ }^{100}$		107	102	122	14613	36 158				15120	${ }^{04} 105$	
Rows 3	${ }^{100}$	102	187	102	132	${ }_{14} 13$	${ }^{36} 1150$	56	${ }^{182}$	12215	15104	04 105	
4	${ }^{100}$	102	107	102	13	13	1361180	A	${ }^{122}$	12	15104	15	
5	${ }_{100}$	102	107	102	13		${ }_{60} 188$	86 128	${ }^{8} 122$	12115	15104	O4 105	$1{ }^{13}$
6	${ }_{100}$	102	107	102	12	∞	2050				202		
	100		107								5	${ }^{\circ}$	
	${ }_{10}$	12	10	12	132	6		${ }_{56} 128$	${ }^{128}$	12115	${ }^{15} 104$	104 105	
	${ }_{10}$	12	107	102	132	8		${ }_{56} 148$	18812	1215	${ }_{15} 104$	${ }^{104} 105$	
				122	132								
						146						04 105	

Values in matrix = how much light

- Higher = more light
- Lower = less light
- Bounded
- No light = 0
- Sensor/device limit = max
- Typical ranges:
- [0-255], fit into byte
- [0-1], floating point
- Called pixels

Addressing pixels

- Ways to index:
- (r,c)

- We use (x, y)
- So does your homework!
- Arbitrary
- Only thing that matters is consistency

Color image: 3d tensor in colorspace

RGB information in separate "channels"

Remember: we can match "real" colors using a mix of primaries.

Each channel encodes one primary. Adding the light produced from each primary mimics the original color.

Addressing pixels

- We use (x, y, c)
- $(1,2,0)$:
- column 1, row 2, channel 0
- Be consistent
- But do what we do for homeworks :-)
- Also for size:
- $1920 \times 1080 \times 3$ image:
- 1920 px wide
- 1080 pxtall
- 3 channels

How do we store them?

Storage: row major vs column major

Column Major

Storage: row major vs column major

HW

WH

Typically use row-major or HW

In 3d we have more choices!

HWC: channels interleaved

CHW: channels separated

CHW Pop quiz

We'll use CHW, it's what a lot of other libraries use.
In an array for a $1920 \times 1080 \times 3$ image what entry would contain the pixel $(15,192,2)$?

Formula:
$x+y^{*} W+z^{*} W^{*} H$

CHW Pop quiz

In an array for a $1920 \times 1080 \times 3$ image what entry would contain the pixel $(15,192,2)$?

In general for (x, y, z) of image ($\mathrm{W}, \mathrm{H}, \mathrm{C}$)
$x+y^{*} W+z^{*} W^{*} H$
$15+192 * 1920+2 * 1920 * 1080=4,515,855$
Remember, everything is 0 indexed
Where does $(0,0,0)$ go?
Position $0+0+0=0$

In your homework

Image interpolation and resizing

An image is kinda like a function

An image is a mapping from indices to pixel value:

- Im: |x|x|->R

We may want to pass in non-integers:

- Im': RxRxI->R

A note on coordinates in images

integer pixels

A note on coordinates in images

We can think of their values as being at the centers.

A note on coordinates in images

Now we can move to a real coordinate system.

A note on coordinates in images

On the image

A note on coordinates in images

So, the value of the pixel (x, y) is now centered at (x, y).

A note on coordinates in images

But there are other real-valued points.

0123 .

A note on coordinates in images

This point is:

Just be careful

This point is:

Interpolation

- How do we find out the VALUE of a noninteger point, when the image only comes with integer points, ie $(25,45,3)$.
- For our assignment:

1. Nearest-Neighbor Interpolation
2. Bilinear Interpolation

Nearest neighbor: what it sounds like

$f(x, y, z)=\operatorname{lm}($ round (x), round $(y), z)$

- Looks blocky
- Common pitfall: Integer division rounds down in C
- Note: z is still int

Triangle interpolation: for less structured image (alternate approach)

Sometimes you have a regular grid, sometimes you don't.

When you don't, you can look for triangles!

Triangle interpolation: for less structured image

Sometimes you have a regular grid, sometimes you don't.

When you don't look for triangles!

Triangle interpolation: for less structured image

Sometimes you have a regular grid, sometimes you don't.

When you don't look for triangles!

Triangle interpolation: for less structured image

Sometimes you have a regular grid, sometimes you don't.

When you don't look for triangles!

Triangle interpolation: for less structured image
Weighted sum using triangles:
$\mathrm{Q}=\mathrm{V} 1 * \mathrm{~A} 1+\mathrm{V} 2 * \mathrm{~A} 2+\mathrm{V} 3 * \mathrm{~A} 3$
WHY?
V1 is the furthest from q and A 1 gives the smallest area.

V2 is next furthest from 1 and A2 gives the next smallest area...

Should normalize this based on
 total area, but we won't use this.

Bilinear interpolation: for grids, pretty good; easier than triangles

This time find the closest pixels in a box

Bilinear interpolation: for grids, pretty good

This time find the closest pixels in a box

Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box

Bilinear interpolation: for grids, pretty good
This time find the closest pixels in a box

Same plan, weighted sum based on area of opposite rectangle
$\mathrm{Q}=\mathrm{V} 1 * \mathrm{~A} 1+\mathrm{V} 2 * \mathrm{~A} 2+\mathrm{V} 3^{*} \mathrm{~A} 3+\mathrm{V} 4^{*} \mathrm{~A} 4$

Bilinear interpolation: for grids, pretty good

$$
\begin{aligned}
& \mathrm{A} 1=\mathrm{d} 2 * \mathrm{~d} 4 \\
& \mathrm{~A} 2=\mathrm{d} 1^{*} \mathrm{~d} 4 \\
& \mathrm{~A} 3=\mathrm{d} 2^{*} \mathrm{~d} 3 \\
& \mathrm{~A} 4=\mathrm{d} 1^{*} \mathrm{~d} 3 \\
& \mathrm{q}=\mathrm{V} 1^{*} \mathrm{~A} 1+\mathrm{V} 2^{*} \mathrm{~A} 2+\mathrm{V} 3^{*} \mathrm{~A} 3+\mathrm{V} 4^{*} \mathrm{~A} 4
\end{aligned}
$$

Bilinear interpolation: for grids, pretty good

- Smoother than NN
- More complex
- 4 lookups
- Some math
- Often the right tradeoff of speed vs final result

Bicubic sampling: more complex, maybe better?

- A cubic interpolation of 4 cubic interpolations
- Smoother than bilinear, no "star"
- 16 nearest neighbors
- Fit 3rd order poly:

Bilinear

Bicubic

- $f(x)=a+b x+c x^{\wedge} 2+d x^{\wedge} 3$
- Interpolate along axis
- Fit another poly to interpolated values

Bicubic vs bilinear

Bicubic vs bilinear

Resize algorithm:

- For each pixel in new image:

1. Map to old im coordinates
2. Interpolate value
3. Set new value in image

What about shrinking?

- NN and Bilinear only look at small area
- Lots of artifacting
- Staircase pattern on diagonal lines
- We'll fix this next class with filters!

So what is this interpolation useful for?

Image resizing!

Say we want to increase the size of an image...

This is a beautiful image of a sunset... it's just very small...

Image resizing!

Say we want to increase the size of an image...

This is a beautiful image of a sunset... it's just very small...

Say we want to increase size 4×4 -
> 7x7

Resize $4 x 4$-> 7x7
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$

- Create our new image
0
-

\sim
m

		1	1	1	-	
				1		
-						
-						

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a^{*} 7=4$

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a^{*} 7=4$
- $\quad a=4 / 7$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$

$$
-a^{*}-.5+b=-.5
$$

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$

$$
\begin{aligned}
& \quad a^{*} .5+b=-.5 \\
& -\quad 4 / 7^{*}-1 / 2+b=-1 / 2
\end{aligned}
$$

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$

$$
\begin{array}{ll}
& a^{*}-.5+b=-.5 \\
- & 4 / 7^{*}-1 / 2+b=-1 / 2 \\
- & -4 / 14+b=-7 / 14
\end{array}
$$

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$

$$
\begin{aligned}
& -\quad a^{*}-.5+b=-.5 \\
& -\quad 4 / 7^{*}-1 / 2+b=-1 / 2 \\
& -\quad-4 / 14+b=-7 / 14 \\
& -\quad b=-3 / 14
\end{aligned}
$$

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- System of equations
- $\quad a X+b=Y$
- $\quad a^{*}-.5+b=-.5$
- $\quad a * 6.5+b=3.5$
- $a=4 / 7$
- $b=-3 / 14$
- So, we can start with any coordinate X of the big (new) image and use a and b to get Y on the smaller (old) image.

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords (Y is old)

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- $4 / 7$ X - $3 / 14=$ Y
- Iterate over new pts
- Map to old coords (Y is old)
- $(1,3)$

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- $4 / 7$ X $-3 / 14=$ Y
- Iterate over new pts
- Map to old coords
- $(1,3)$
- 4/7*1-3/14
- $4 / 7 * 3-3 / 14$

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$
- 4/7*1-3/14
- $4 / 7 * 3-3 / 14$
- $(5 / 14,21 / 14)$

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 X-3 / 14=Y$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values
- Size of opposite rects

Resize 4x4 -> 7x7

- Create our new image

V = Yval*Yar+Bval*Var+R1val*R1ar+R2val*R2ar

- For each channel c, put the interpolated value from that channel in position ($1,3, c$).

Resize 4x4 -> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

Resize 4x4 -> 7x7

- Create our new image results
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values
- Fill in the rest
- On outer edges use padding!

Resize 4×4-> 7x7

- Create our new image
- Match up coordinates
- $4 / 7 \mathrm{X}-3 / 14=\mathrm{Y}$
- Iterate over new pts
- Map to old coords
- $(1,3)$-> $(5 / 14,21 / 14)$
- Interpolate old values
- Final result 7×7

We did it!

Let's do something interesting already!!

Want to make image smaller

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

448×448-> 64x64

$448 x 448$-> 64x64

$448 x 448$-> 64x64

448×448-> 64x64

IS THIS ALL THERE IS??

THERE IS A BETTER WAY!

Next Time: Filtering

