
1

11. Ray Tracing

2

Reading

Required:

Watt, sections 1.3-1.4, 12.1-12.5.1.

Further reading:

Watt, chapter 14 and the rest of chapters 10 and 12.

A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]

T. Whitted. An improved illumination model for
shaded display. Communications of the ACM 23(6),
343-349, 1980. [In the reader.]

3

Geometric optics

Modern theories of light treat it as both a wave and a
particle.

We will take a combined and somewhat simpler view
of light – the view of geometric optics.

Here are the rules of geometric optics:

Light is a flow of photons with wavelengths.
We'll call these flows “light rays.”

Light rays travel in straight lines in free space.

Light rays do not interfere with each other as
they cross.

Light rays obey the laws of reflection and
refraction.

Light rays travel form the light sources to the
eye, but the physics is invariant under path
reversal (reciprocity).

4

Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward ray
tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward ray
tracing)

We will generally follow rays from the eye into the
scene.

5

Precursors to ray tracing

Local illumination

Cast one eye ray, then shade according to light

Appel (1968)

Cast one eye ray + one ray to light

6

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the
graphics community.

Combines eye ray tracing + rays to light
Recursively traces rays

Algorithm:

1.For each pixel, trace a primary ray in direction V to the
first visible surface.

2.For each intersection, trace secondary rays:

Shadow rays in directions Li to light sources
Reflected ray in direction R.
Refracted ray or transmitted ray in direction T.

V

T
T

R

R

L

L

T

R
L

T

7

Whitted algorithm (cont'd)

Let's look at this in stages:

Primary rays Shadow rays

Reflection rays Refracted rays

L

L

L

L

R

R

R

L
L

L

V

V

V

V
V

T
T

R

R

L

L

T

R

P.P.

V

V

L

T

8

Shading

A ray is defined by an origin p and a unit direction d
and is parameterized by t:

p + td

Let I(p, d) be the intensity seen along that ray. Then:

I(p, d) = Idirect + Ireflected + Itransmitted

where

Idirect is computed from the Phong model

Ireflected = kr I (q, R)

Itransmitted = ktI (q, T)

Typically, we set kr = ks and kt = 1 – ks .

L

R
T

d

q

p

9

Reflection and transmission

Law of reflection:

θi = θr

Snell's law of refraction:

ηi sinθI = ηt sin θt

where ηi , ηt are indices of refraction.

N
R

T

-d

q

10

Total Internal Reflection

The equation for the angle of refraction can be
computed from Snell's law:

What happens when ηi > ηt?

When θt is exactly 90°, we say that θI has achieved the
“critical angle” θc .

For θI > θc , no rays are transmitted, and only reflection
occurs, a phenomenon known as “total internal
reflection” or TIR.

Air

Glass

11

Error in Watt!!

In order to compute the refracted direction, it is useful
to compute the cosine of the angle of refraction in
terms of the incident angle and the ratio of the indices
of refraction.

On page 24 of Watt, he develops a formula for
computing this cosine. Notationally, he uses µ instead
of η for the index of refraction in the text, but uses η
in Figure 1.16(!?), and the angle of incidence is φ and
the angle of refraction is θ.

Unfortunately, he makes a grave error in computing
cosθ.

The last equation on page 24 should read:

2 2cos 1 (1 cos)θ µ φ= − −

12

Ray-tracing pseudocode

We build a ray traced image by casting rays through
each of the pixels.

function traceImage (scene):

for each pixel (i,j) in image

s = pixelToWorld(i,j)

p = COP

d = (s - p)/||s – p||

I(i,j) = traceRay(scene, p, d)

end for

end function

13

Ray-tracing pseudocode, cont’d

function traceRay(scene, p, d):

(t, N, material) ← intersect (scene, p, d)

q ray (p, d) evaluated at t

I = shade()

R = reflectDirection()

I ← I + material.kr ∗ traceRay(scene, q, R)

if ray is entering object then

n_i = index_of_air

n_t = material.index

else

n_i = material.index

n_t = index_of_air

if (notTIR ()) then

T = refractDirection ()

I ← I + material.kt ∗ traceRay(scene, q, T)

end if

return I

end function

14

Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:

15

Shading pseudocode

Next, we need to calculate the color returned by the
shade function.

function shade(scene, material, q, N, d):

I ← material.ke + material.ka * scene->Ia
for each light source do:

atten = -> distanceAttenuation() *

-> shadowAttenuation()

I ← I + atten*(diffuse term + spec term)

end for

return I

end function

16

Shadow atttenuation

Computing a shadow can be as simple as checking to
see if a ray makes it to the light source:

function shadowAttenuation(scene, p)

d = (p - .position).normalize()

(q, N, material) ← intersect(scene, p, d)

if q is before the light source then:

atten = 0

else

atten = 1

end if

return atten

end function

Q: What if there are transparent objects along a path to
the light source?

17

Intersecting rays with spheres

Given:

The coordinates of a point along a ray passing
through p in the direction d are:

A unit sphere S centered at the origin defined by
the equation:

Find: The t at which the ray intersects S.

= +
= +

= +

x x

y y

z z

x p td

y p td

z p td

d
p

x

y

z

18

Intersecting rays with spheres

Solution by substitution:

where

Q: What are the solutions of the quadratic equation in
t and what do they mean?

Q: What is the normal to the sphere at a point (x,y,z)
on the sphere?

+ + − =

+ + + + + =

+ + =

2 2 2

2 2 2

2

1 0

() () () 0

0

x x y y z z

x y z

p td p td p td

at bt c

= + +
= + +

= + + −

2 2 2

2 2 2

2()

1

x y z

x x y y z z

x y z

a d d d

b p d p d p d

c d d d

19

Intersecting with xformed geometry

What if the sphere were transformed by a matrix M
(e.g., to make a rotated, translated, ellipsoid)?

Apply M-1 to the ray first and intersect in object (local)
coordinates!

20

Intersecting with xformed geometry

The intersected normal is in object (local) coordinates.
How do we transform it to world coordinates?

21

Epsilons

Due to finite precision arithmetic, we do not always
get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

22

Intersecting rays with cones

A cone centered at the origin:

x

y

z

∆y

∆z

Has the form:

where:

Intersection with such a cone can be computed the
same way we did with spheres.

β=+2 2 2 2x y z

β
=

∆=
∆ 0x

y

z

23

Intersecting rays with capped cones

For capped cones, we define top and bottom radii
and a height. These are really two shifted types of
cones.

If the top radius is smaller:

Else:

x

y

z

x

y

z

rt

rb

h

rt
h

rb

(0,0,γ)

x

y

z

x

y

z

rt

rb

h

rt
h

rb
(0,0,γ)

24

Intersecting rays with capped cones

In this case, we can solve by shifting the cone down

by γ:

Your assignment is to:

Solve for β and γ (and store these statically)

Intersect a ray with the cone and its caps

Q: What is the normal to the cone?

It turns out that if you can write a surface as:

(a.k.a. an implicit surface), then:

So, the implicit equation and normal for a cone are:

β γ= ++2 2 2 2()x y z

=(, ,) 0f x y z

∇ (, ,)f x y zN

25

Intersecting rays with polyhedra

To intersect a ray with a polyhedron:

Test intersection of ray with bounding sphere.

Locate the “front-facing” faces of the
polyhedron with

d · N

Intersect the ray with each front face's
supporting plane.

Use a point-in-polygon test to see if the ray is
inside the face.

Sort intersections according to smallest t.

Np d p d

Polyhedron testing
Polygon testing

26

Acceleration:
Hierarchical bounding volumes

Vanilla ray tracing is really slow!

In practice, some acceleration technique is almost
always used.

One approach is to use hierarchical bounding
volumes.

Intersect with largest B.V... ...then intersect with children...

...until you reach the leaf nodes - the primitives.

27

Acceleration: Spatial subdivision

Another approach is spatial subdivision.

Idea:

Partition objects spatially.

Trace ray through voxel array.

Partition can be uniform or adaptive (e.g., octrees).

Uniform subdivion in 2D Quadtree in 2D

Uniform subdivion in 3D Octree in 3D

28

Summary

What to take home from this lecture:

1. The meanings of all the boldfaced terms.

2. Enough to implement basic recursive ray
tracing.

3. How reflection and transmission directions are
computed.

4. How ray--object intersection tests are
performed.

5. Basic acceleration strategies.

