
1!

Affine transformations

CSE 457
Winter 2014

2!

Reading

Required:

  Angel 3.1, 3.7-3.11

Further reading:

  Angel, the rest of Chapter 3
  Foley, et al, Chapter 5.1-5.5.
  David F. Rogers and J. Alan Adams,

Mathematical Elements for Computer
Graphics, 2nd Ed., McGraw-Hill, New York,
1990, Chapter 2.

3!

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x', y‘, z‘) = f (x, y, z).

These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

4!

Vector representation

We can represent a point, p = (x,y), in the plane or
p=(x,y,z) in 3D space

  as column vectors

  as row vectors

5!

Canonical axes

6!

Vector length and dot products

7!

Vector cross products

8!

Representation, cont.

We can represent a 2-D transformation M by a
matrix

If p is a column vector, M goes on the left:

If p is a row vector, MT goes on the right:

We will use column vectors.

9!

Two-dimensional transformations

Here's all you get with a 2 x 2 transformation
matrix M:

So:

We will develop some intimacy with the elements
a, b, c, d…

10!

Identity

Suppose we choose a=d=1, b=c=0:

  Gives the identity matrix:

  Doesn't move the points at all

11!

Scaling

Suppose we set b=c=0, but let a and d take on any
positive value:

  Gives a scaling matrix:

  Provides differential (non-uniform) scaling
in x and y:

121212121212xyxyxy 12!

Suppose we keep b=c=0, but let either a or d go
negative.

Examples:

xyxy

13!

Now let's leave a=d=1 and experiment with b. . . .

The matrix

gives:

1111xyxy

14!

Effect on unit square

Let's see how a general 2 x 2 transformation M
affects the unit square:

11pqrsxyxy

15!

Effect on unit square, cont.

Observe:

  Origin invariant under M
  M can be determined just by knowing how the

corners (1,0) and (0,1) are mapped
  a and d give x- and y-scaling
  b and c give x- and y-shearing

16!

Rotation

From our observations of the effect on the unit
square, it should be easy to write down a matrix for
“rotation about the origin”:

 

 

Thus,

11xyxy

17!

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

  Scaling
  Rotation
  Reflection
  Shearing

 Q: What important operation does that leave out?

18!

Affine transformations

In order to incorporate the idea that both the basis
and the origin can change, we augment the linear
space u, v with an origin t.

We call u, v, and t (basis and origin) a frame for an
affine space.

Then, we can represent a change of frame as:

This change of frame is also known as an affine
transformation.

How do we write an affine transformation with
matrices?

19!

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding
a third component to every point:

And then transform with a 3 x 3 matrix:

. . . gives translation!

1xyxy111

20!

Rotation about arbitrary points

1.  Translate q to origin

2.  Rotate

3.  Translate back

Note: Transformation order is important!!

Until now, we have only considered rotation about
the origin.

With homogeneous coordinates, you can specify
a rotation, θ, about any point q = [qx qy]T with a
matrix:

xyxyxyxyqθ

21!

Points and vectors
Vectors have an additional coordinate of w=0.
Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an
affine matrix?

These representations reflect some of the rules of
affine operations on points and vectors:

One useful combination of affine operations is:

Q: What does this describe?

22!

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-
D ones.

For example, scaling:

xxyzyz

23!

Translation in 3D

xxyzyz

24!

How many degrees of freedom are there in an
arbitrary 3D rotation?

Rotation in 3D

25!

Shearing in 3D

Shearing is also more complicated. Here is one
example:

We call this a shear with respect to the x-z plane.

xxyzyz

26!

Properties of affine transformations

Here are some useful properties of affine
transformations:

  Lines map to lines
  Parallel lines remain parallel
  Midpoints map to midpoints (in fact, ratios are

always preserved)

pqrp'q'r'stst:: !

27!

Affine transformations in OpenGL

OpenGL maintains a “modelview” matrix that holds
the current transformation M.

The modelview matrix is applied to points (usually
vertices of polygons) before drawing.

It is modified by commands including:

  glLoadIdentity() M ← I
– set M to identity

  glTranslatef(tx, ty, tz) M ← MT
–  translate by (tx, ty, tz)

  glRotatef(θ, x, y, z) M ← MR
–  rotate by angle θ about axis (x, y, z)

  glScalef(sx, sy, sz) M ← MS
– scale by (sx, sy, sz)

Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.

