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Reading 

Required: 

  Angel 3.1, 3.7-3.11 

Further reading: 

  Angel, the rest of Chapter 3 
  Foley, et al, Chapter 5.1-5.5. 
  David F. Rogers and J. Alan Adams, 

Mathematical Elements for Computer 
Graphics, 2nd Ed., McGraw-Hill, New York, 
1990, Chapter 2.  
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Geometric transformations 

Geometric transformations will map points in one 
space to points in another: (x', y‘, z‘ ) = f (x, y, z). 

These transformations can be very simple, such as 
scaling each coordinate, or complex, such as non-
linear twists and bends. 

We'll focus on transformations that can be 
represented easily with matrix operations. 
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Vector representation 

We can represent a point, p = (x,y), in the plane or 
p=(x,y,z) in 3D space 

  as column vectors  

  as row vectors 
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Canonical axes 
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Vector length and dot products 
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Vector cross products 
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Representation, cont. 

We can represent a 2-D transformation M by a 
matrix 

If p is a column vector, M goes on the left: 

If p is a row vector, MT goes on the right: 

We will use column vectors. 
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Two-dimensional transformations 

Here's all you get with a 2 x 2 transformation 
matrix M: 

So: 

We will develop some intimacy with the elements 
a, b, c, d… 
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Identity 

Suppose we choose a=d=1, b=c=0: 

  Gives the identity matrix: 

   Doesn't move the points at all 
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Scaling 

Suppose we set b=c=0, but let a and d take on any 
positive value: 

  Gives a scaling matrix: 

  Provides differential (non-uniform) scaling 
in x and y: 
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______________ 

Suppose we keep b=c=0, but let either a or d go 
negative. 

Examples: 

xyxy
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____________ 

Now let's leave a=d=1 and experiment with b. . . . 

The matrix 

gives: 

1111xyxy
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Effect on unit square 

Let's see how a general 2 x 2 transformation M 
affects the unit square:  

11pqrsxyxy
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Effect on unit square, cont. 

Observe: 

  Origin invariant under M 
  M can be determined just by knowing how the 

corners (1,0) and (0,1) are mapped 
  a and d give x- and y-scaling 
  b and c give x- and y-shearing 
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Rotation 

From our observations of the effect on the unit 
square, it should be easy to write down a matrix for 
“rotation about the origin”: 

    

    

Thus, 

11xyxy
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Limitations of the 2 x 2 matrix 

A 2 x 2 linear transformation matrix allows 

  Scaling 
  Rotation 
  Reflection 
  Shearing 

 Q: What important operation does that leave out? 
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Affine transformations 

In order to incorporate the idea that both the basis 
and the origin can change, we augment the linear 
space u, v with an origin t. 

We call u, v, and t (basis and origin) a frame for an 
affine space. 

Then, we can represent a change of frame as: 

This change of frame is also known as an affine 
transformation. 

How do we write an affine transformation with 
matrices? 
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Homogeneous coordinates 

Idea is to loft the problem up into 3-space, adding 
a third component to every point: 

And then transform with a 3 x 3 matrix: 

. . . gives translation! 

1xyxy111
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Rotation about arbitrary points 

1.  Translate q to origin 

2.  Rotate 

3.  Translate back 

Note: Transformation order is important!! 

Until now, we have only considered rotation about 
the origin. 

With homogeneous coordinates, you can specify 
a rotation, θ, about any point q = [qx qy]T with a 
matrix: 

xyxyxyxyqθ
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Points and vectors 
Vectors have an additional coordinate of w=0.  
Thus, a change of origin has no effect on vectors. 

Q: What happens if we multiply a vector by an 
affine matrix? 

These representations reflect some of the rules of 
affine operations on points and vectors: 

One useful combination of affine operations is: 

Q: What does this describe? 
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Basic 3-D transformations: scaling 

Some of the 3-D transformations are just like the 2-
D ones.   

For example, scaling: 

xxyzyz
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Translation in 3D 

xxyzyz
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How many degrees of freedom are there in an 
arbitrary 3D rotation?   

Rotation in 3D 
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Shearing in 3D 

Shearing is also more complicated.  Here is one 
example: 

We call this a shear with respect to the x-z plane. 

xxyzyz
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Properties of affine transformations 

Here are some useful properties of affine 
transformations:  

  Lines map to lines 
  Parallel lines remain parallel 
  Midpoints map to midpoints (in fact, ratios are 

always preserved) 

pqrp'q'r'stst:: !
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Affine transformations in OpenGL 

OpenGL maintains a “modelview” matrix that holds 
the current transformation M. 

The modelview matrix is applied to points (usually 
vertices of polygons) before drawing. 

It is modified by commands including: 

  glLoadIdentity()           M ← I 
– set M to identity 

  glTranslatef(tx, ty, tz)  M ← MT 
–  translate by (tx, ty, tz) 

  glRotatef(θ, x, y, z)  M ← MR 
–  rotate by angle θ about axis (x, y, z) 

  glScalef(sx, sy, sz)   M ← MS 
– scale by (sx, sy, sz) 

Note that OpenGL adds transformations by  
postmultiplication of the modelview matrix. 


