## Ray Tracing

CSE 457
Winter 2014

## Reading

## Required:

- Shirley, section 10.1-10.7 (online handout)
- Triangle intersection (online handout)


## Further reading:

- Shirley errata on syllabus page, needed if you work from his book instead of the handout, which has already bee
corrected
T. Whitted. An improved illumination model for shaded display. Communications of the
23(6), 343-349, 1980
A. Glassner. An Introduction to Ra
racing. Academic Press, 1989
K. Turkowski, Properties of Surface ions," Graphics Gems 1990, pp. 539-547.


## Geometric optics

Modern theories of light treat it as both a wave and a particle.

We will take a combined and somewhat simple view of light - the view of geometric optics.
Here are the rules of geometric optics:

- Light is a flow of photons with
wavelengths. We'll call these flows "light rays."
Light rays travel in straight lines in free space.
Light rays do not interfere with each other as they cross.
Light rays obey the laws of reflection and refraction.
- Light rays travel from the light sources to the eye, but the physics is invariant under path reversal (reciprocity).


## Eye vs. light ray tracing

Where does light begin?
At the light: light ray tracing (a.k.a., forward ray tracing or photon tracing)


At the eye: eye ray tracing (a.k.a., backward ray tracing)




Ray casting and local illumination
Now let's actually build the ray tracer in
stages. We'll start with ray casting and local
illumination:

## Direct illumination



A ray is defined by an origin $P$ and a unit direction $d$ and is parameterized by $t>0$ :
$\mathbf{r}(t)=P+t \mathbf{d}$
Let $l(P, \mathbf{d})$ be the intensity seen along a ray Then:

$$
l(P, \mathbf{d})=I_{\text {direct }}
$$

where

- $I_{\text {direct }}$ is computed from the Blinn-Phong direct
model


## Shading in "Trace"

The Trace project uses a version of the BlinnPhong shading equation we derived in class, with two modifications:

- Distance attenuation is clamped to be at most
- 1:

$$
A_{j}^{d i s t}=\min \left\{1 \frac{1}{a_{j}+b_{j} r_{j}+c_{j} r_{j}^{2}}\right\}
$$

- Shadow attenuation $A^{\text {shadow }}$ is included.

Here's what it should look like:
$I=k_{e}+k_{a} L_{L a}+$

$$
\sum_{j} A_{j}^{\text {shadow }} A_{j}^{\text {dist }} t_{L, j} \boldsymbol{B}_{j}\left[k_{d}\left(\mathbf{N} \cdot \mathbf{L}_{j}\right)+k_{s}\left(\mathbf{N} \cdot \mathbf{H}_{j}\right)^{n_{s}}\right]
$$

This is the shading equation to use in the Trace project!

## Ray-tracing pseudocode

We build a ray traced image by casting rays through each of the pixels.
function tracelmage (scene):
for each pixel ( $\mathrm{i}, \mathrm{j}$ ) in image
$A=$ pixelToWorld $(\mathrm{i}, \mathrm{j})$
$P=\mathbf{C O P}$
$\mathrm{d}=(A-P) /\|A-P\|$
$1(\mathrm{i}, \mathrm{j})=\operatorname{traceRay}($ scene, $P, \mathrm{~d})$
end for
end function
function traceRay(scene, $P, \mathbf{d}$ ):
$(\mathrm{t}, \mathbf{N}, \mathrm{mtrl}) \leftarrow$ scene.intersect $(P, \mathbf{d})$
$Q \leftarrow \operatorname{ray}(P, \mathbf{d})$ evaluated at $t$
I = shade(
)
return I
end function

## Ray casting with shadows

Now we'll add shadows by casting shadow rays:


## Shading with shadows

To include shadows, we need to modify the shade function:
function shade (mtrl, scene, $Q, \mathbf{N}, \mathbf{d})$ :
$1 \leftarrow$ mtrl. $\mathrm{k}_{\mathrm{e}}+$ mtrl. $\mathrm{k}_{\mathrm{a}}{ }^{*} \mathrm{l}_{\mathrm{La}}$
for each light source Light do:
atten $=$ Light ->
distanceAttenuation $(Q)$ *
shadowAttenuation( L> )
L = Light -> getDirection (Q) $I \leftarrow I+$ atten $^{*}$ (diffuse term + specular
term)
end for
return I
end function

## Shadow attenuation

Computing a shadow can be as simple as
checking to see if a ray makes it to the light
ource.
For a point light source:
function PointLight::shadowAttenuation(scene
$\mathbf{d}=$ getDirection $(P)$
$(\mathrm{t}, \mathbf{N}$, mtrl) $\leftarrow$ scene.intersect $(P$, d)
Compute $t_{\text {light }}$
if $\left(\mathrm{t}<\mathrm{t}_{\text {light }}\right)$ then
atten $=(0,0,0)$
else
atten $=(1,1,1)$
end if
return atten
end function
Note: we will later handle color-filtered
Note: we will later handle color-filtered shadowing, so this function needs to return
color value. color value.


## Reflection



Law of reflection:

$$
\theta_{i}=\theta_{r}
$$

$\mathbf{R}$ is co-planar with $\mathbf{d}$ and $\mathbf{N}$


| Terminating recursion |  |
| :--- | :--- |
| Q: How do you bottom out of recursive ray tracing? |  |
| Possibilities: |  |
|  |  |
|  | 20 |

## Whitted ray tracing

Finally, we'll add refraction, giving us the Whitted ray tracing model:


## Shading with reflection and refraction



Let $l(P, \mathbf{d})$ be the intensity seen along a ray. Then:
$I(P, \mathbf{d})=I_{\text {direct }}+I_{\text {reflected }}+I_{\text {transmitted }}$
where

- $I_{\text {direct }}$ is computed from the Blinn-Phong
model, plus shadow attenuation
- $I_{\text {reflected }}=k_{r} I(Q, \mathbf{R})$
- $I_{\text {transmitted }}=k_{t}(\mathbf{Q}, \mathbf{T}$

Typically, we set $k_{r}=k_{\mathrm{s}}$ and $k_{t}=1-k_{\mathrm{s}}$ (or ( $0,0,0$ ), if opaque, where $k_{t}$ is a color value).
[Generally, $k_{r}$ and $k_{t}$ are determined by "Fresnel reflection," which depends on angle of incidence and changes the polarization of the light. This is discussed in Shirley's textbook and can be implemented for extra credit.]

## Refraction

Snell's law of refraction

$$
\eta_{i} \sin \theta_{i}=\eta_{t} \sin \theta_{t}
$$

where $\eta_{i}, \eta_{t}$ are indices of refraction

In all cases, $\mathbf{R}$ and $\mathbf{T}$
are co-planar with $\mathbf{d}$
and $\mathbf{N}$
The index of refraction is material dependent.
When $\theta_{t}$ is exactly $90^{\circ}$, we say that $\theta_{i}$ has achieved
the "critical angle" $\theta_{c}$
It can also vary with wavelength, an effect called dispersion that explains the colorful light rainbows from prisms. (We will generally assume no dispersion.)


## Total Internal Reflection

The equation for the angle of refraction can be computed from Snell's law:

For $\theta_{i}>\theta_{c}$, no rays are transmitted, and only reflection occurs, a phenomenon known as "total internal reflection" or TIR


## Shirley handout

Shirley uses different symbols. Here is the translation between them
$r=R$
$t=T$
$\mathrm{t}=\mathrm{T}$
$\phi=\theta_{t}$
$\phi=\theta_{t}$
$\theta=\theta_{r}=\theta$
$n_{t}=\eta_{t}$
Also, Shirley has two important errors that have already been corrected in the handout.

But, if you're consulting the original text, be sure to refer to the errata posted on the syllabus and on the project page for corrections.

## Ray-tracing pseudocode, revisited

## function traceRay(scene, $P, \mathbf{d}$ ):

(t, $\mathbf{N}, \mathrm{mtr}) \leftarrow$ scene.intersect ( $P, \mathbf{d}$ )
$Q \leftarrow$ ray $(P, \mathbf{d})$ evaluated at $t$
I = shade(scene, mtrl, Q, N, -d
$\mathbf{R}=$ reflectDirection $(\mathbf{N},-\mathbf{d})$
$1 \leftarrow 1+$ mtrl. $\mathrm{k}_{\mathrm{r}}$ * traceRay(scene, $Q, \mathbf{R}$ )
if ray is entering object then
n_i = index_of_air
n_t = mtrl.index
else
n_i = mtrl.index
n_t = index_of_air
if not TIR
$\mathbf{T}=$ refractDirection
$\mathrm{I} \leftarrow \mathrm{I}+$ mtrl. $\mathrm{k}_{\mathrm{t}}{ }^{*}$ traceRay(scene, $\mathrm{Q}, \mathbf{T}$ )
end if
return 1
end function

## Terminating recursion, incl.

## refraction

Q: Now how do you bottom out of recursive ray tracing?

## Shadow attenuation (cont'd)

Q: What if there are transparent objects along a path to the light source?

## Shadow attenuation (cont'd)

Another model would be to treat the glass as solidly colored in the interior. Shirley's textbook based on Beer's Law, which you can implement for extra credit.


## Photon mapping

Combine light ray tracing (photon tracing) and eye ray tracina:

to get photon mapping


## Normals and shading when inside

When a ray is inside an object and intersects the
object's surface on the way out, the normal will be
pointing away from the ray (i.e., the normal always points to the outside by default).
You must negate the normal before doing any of the shading, reflection, and refraction that follows

Finally, when shading a point inside of an object apply $k_{t}$ to the ambient component, since that "ambient light" had to pass through the object to get there in the first place

## Intersecting rays with spheres

Now we've done everything except figure out what that "scene.intersect (P, d)" function does.

Mostly, it calls each object to find out the $t$ value at which the ray intersects the object. Let's start with intersecting spheres

Given:


- The coordinates of a point along a ray passing
through $P$ in the direction $d$ are:

$$
\begin{aligned}
& x=P_{x}+t d_{x} \\
& y=P_{y}+t d_{y} \\
& z=P_{z}+t d d_{z}
\end{aligned}
$$

- A unit sphere $S$ centered at the origin defined by the equation:

Find: The $t$ at which the ray intersects $S$.

## Intersecting rays with spheres

Solution by substitution:
$\left(P_{x}+t d_{x}\right)^{2}+\left(P_{x}+t d_{x}\right)^{2}+$

$$
a t^{2}+b t+c=0
$$

where

$$
\begin{aligned}
& a=d_{x}^{2}+d_{y}^{2}+d_{z}^{2} \\
& b=2\left(P_{x} d_{x}+P_{y} d_{y}+P_{z} d_{z}\right) \\
& c=P_{x}^{2}+P_{y}^{2}+P_{z}^{2}-1
\end{aligned}
$$

Q: What are the solutions of the quadratic equation in $t$ and what do they mean?

Q: What is the normal to the sphere at a point $(x, y, z)$ on the sphere?

## Ray-triangle intersection



To intersect with a triangle, we first solve for the equation of its supporting plane.

How might we compute the (un-normalized) normal?

Given this normal, how would we compute $k$ ?

Using these coefficients, we can solve for $Q$. Now, we need to decide if $Q$ is inside or outside of the triangle.

## Ray-plane intersection



We can write the equation of a plane as:

$$
a x+b y+c z=k
$$

The coefficients $a, b$, and $c$ form a vector that is normal to the plane, $\boldsymbol{n}=\left[\begin{array}{cc}a b & c\end{array}\right]^{\top}$. Thus, we can rewrite the plane equation as:

We can solve for the intersection parameter (and thus the point):
Ray-triangle intersection
To intersect with a triangle, we first solve for the
equation of its supporting plane.
How might we compute the (un-normalized)
normal?
Given this normal, how would we compute $k$ ?
Using these coefficients, we can solve for $Q$. Now,
we need to decide if $Q$ is inside or outside of the
triangle.

## 3D inside-outside test

One way to do this "inside-outside test"" is to see if $Q$ lies on the left side of each edge as see if $Q$ lies on the left side of each edge as


How might we use cross products to do this?

## 2D inside-outside test

Without loss of generality, we can perform this same test after projecting down a dimension:


If $Q^{\prime}$ is inside of $A^{\prime} B^{\prime} C^{\prime}$, then $Q$ is inside of $A B C$.
Why is this projection desirable?
Which axis should you "project away"?

## Computing barycentric

coordinates
Given a point $Q$ that is inside of triangle $A B C$, w
can solve for $Q$ 's barycentric coordinates in a
$\alpha=A=\operatorname{Area}(Q B C) \quad \operatorname{Area}(A Q) \quad \gamma=\operatorname{Area}(A B Q)$
$\alpha=\frac{A r e a b a l}{\text { Area }(A B C)} \quad \beta=\frac{\operatorname{Area}(A Q C)}{\operatorname{Area}(A B C)} \quad \gamma=\frac{\operatorname{Area}(A B Q)}{\text { Area }(A B C)}$


How can cross products help here?

In the end these calculations can be performed in the 2D projection as well!

## Barycentric coordinates

As we'll see in a moment, it is often useful to represent $Q$ as an affine combination of $A, B$, and $C$ :
$Q=\alpha A+\beta B+\gamma C$
where:

$$
\alpha+\beta+\gamma=1
$$

We call $\alpha, \beta$ and $\gamma$ the barycentric coordinate of $Q$ with respect to $A, B$, and $C$.

## Interpolating vertex properties

The barycentric coordinates can also be used to interpolate vertex properties such as:

- material properties
- texture coordinates
- normals

For example:
$k_{d}(Q)=\alpha k_{d}(A)+\beta k_{d}(B)+\gamma k_{d}(C)$
Interpolating normals, known as Phong interpolation, gives triangle meshes a smooth shading appearance. (Note: don't forget to normalize interpolated normals.)

## Epsilons

Due to finite precision arithmetic, we do not always get the exact intersection at a surface.

Q: What kinds of problems might this cause?

## Intersecting with xformed geometry

In general, objects will be placed using
transformations. What if the object being
intersected were transformed by a matrix M?
Apply $\mathrm{M}^{-1}$ to the ray first and intersect in object (local) coordinates!

Q: How might we resolve this?

## Intersecting with xformed geometry

The intersected normal is in object (local) coordinates. How do we transform it to world coordinates?

## Summary

What to take home from this lecture:

- The meanings of all the boldfaced terms
- Enough to implement basic recursive ray tracing.
- How reflection and transmission directions are computed
How ray-object intersection tests are
performed on spheres, planes, and triangles
How barycentric coordinates within triangles are computed
- How ray epsilons are used.

