CSE/EE 461 - Lecture 7

Bridging LANs

David Wetherall
djw@cs.washington.edu

Last Two Times ...

- Medium Access Control (MAC) protocols
- Part of the Link Layer
- At the heart of Local Area Networks (LANs)
- How do multiple parties share a wire or the air?
- Random access protocols (CSMA/CD)
- Contention-free protocols (turn-taking, reservations)
- Wireless protocols (CSMA/CA and RTS/CTS)

This Time

- Focus:
- What to do when one shared LAN isn't big enough?
- Interconnecting LANs
- Bridges and LAN switches
- A preview of the Network layer

Application
Presentation
Session
Transport
Network
Data Link
Physical

Limits of a LAN

- One shared LAN can limit us in terms of:
- Distance
- Number of nodes
- Performance

- How do we scale to a larger, faster network?
- We must be able to interconnect LANs

Bridges and Extended LANs

- "Transparently" interconnect LANs with bridge
- Receive frames from each LAN and forward to the other
- Each LAN is its own collision domain; bridge isn't a repeater
- Could have many ports or join to a remote LAN

Backward Learning Algorithm

- To optimize overall performance:
- Shouldn't forward $A \rightarrow B$ or $C \rightarrow D$, should forward $A \rightarrow C$ and $D \rightarrow B$

- How does the bridge know?
- Learn who is where by observing source addresses and prune
- Forward using destination address; age for robustness

Why stop at one bridge?

- But to avoid loops we must forward only on select bridge ports!
- The Spanning Tree algorithm does this
- It is separate from backward learning

Spanning Tree Example

- Spanning tree uses select bridges so there are no cycles
- Prune some ports
- Only one tree
- Q: How do we find a spanning tree?
- Automatically

Spanning Tree Algorithm

- Distributed algorithm to compute spanning tree
- Robust against failures, needs no organization
- Outline:
- Goal is to turn some bridge ports off
- Elect a root node of the tree (lowest address)
- Grow tree as shortest distances from the root (using lowest address to break distance ties)
- All done by bridges sending periodic configuration messages over ports for which they are the "best" path
- Then turn off ports that aren't on "best" paths

Algorithm continued

- Each bridge sends periodic messages to others containing:
- Its address, address of the root bridge, and distance (in hops) to root
- Each bridge receives messages, updates "best" config.
- Smaller root address is better, then shorter distance
- To break ties, bridge with smaller address is better
- Initially, each bridge thinks it is the root
- Sends configuration messages on all ports
- Later, bridges send only "best" configs
- Add 1 to distance, send configs where still "best" (designated bridge)
- Turn off forwarding on ports except those that send/receive "best"

Algorithm Example

- Message format: (root, dist to root, bridge)
- Sample messages sequences to and from B3:
- B3 sends (B3, 0, B3) to B2 and B5
- $\quad B 3$ receives $(B 2,0, B 2)$ and $(B 5,0, B 5)$ and accepts $B 2$ as root
- B3 sends (B2, 1, B3) to B5
- B3 receives (B1, 1, B2) and (B1,1, B5) and accepts B1 as root
- B3 wants to send (B1, 2, B2) but doesn't as its nowhere "best"
- B3 receives (B1, 1, B2) and (B1, 1, B5) again ... stable
- Data forwarding is turned off to the LAN A

Some other tricky details

- Configuration information is aged
- If the root fails a new one will be elected
- Reconfiguration is damped
- Adopt new spanning trees slowly to avoid temporary loops

LAN Switches

- LAN switches are multi-port bridges
- Modern, high performance form of bridged LANs
- Looks like a hub, but frames are switched, not shared
- Every host on a separate port, or can combine switches

Limitations of Bridges/Switches

- LAN switches form an effective small-scale network
- Plug and play for real!
- Why can't we build a large network using bridges?
- Little control over forwarding paths
- Size of bridge forwarding tables grows with number of hosts
- Broadcast traffic flows freely over whole extended LAN
- Spanning tree algorithm limits reconfiguration speed
- Poor solution for connecting LANs of different kinds

Key Concepts

- We can overcome LAN limits by interconnection
- Bridges and LAN switches
- But there are limits to this strategy ...
- Next Topic: Routing and the Network layer
- How to grow large and really large networks

