CSE/EE 461 - Lecture 11

IP Addressing

David Wetherall djw@cs.washington.edu

Last Two Times ...

- Focus
 - How do we calculate routes for packets?
- Routing Algorithms
 - Distance Vector routing (RIP)
 - Link State routing (OSPF)

Application Presentation

Session

Transport

Network

Data Link Physical

djw // CSE/EE 461, Autumn 2001

This Lecture

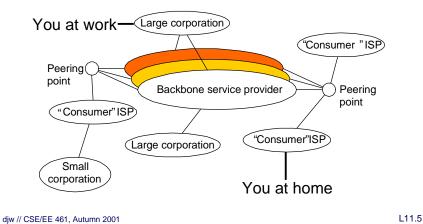
- New focus
 - How do we make routing scale?
- IP Addressing
 - Hierarchy (class A, B, C, subnets)
 - Also allocation (DHCP, ARP)

Application
Presentation
Session
Transport

Network
Data Link
Physical

djw // CSE/EE 461, Autumn 2001

L11.3

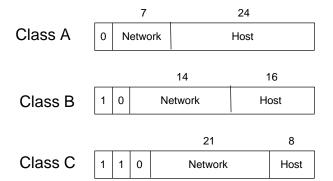

Scalability Concerns

- Routing burden grows with size of an internetwork
 - Size of routing tables
 - Volume of routing messages
 - Amount of routing computation
- RIP/OSPF do not scale to the size of the Internet
- We must apply further techniques:
 - Hierarchical addressing ← Today
 - Use of structural hierarchy
 - Route aggregation

djw // CSE/EE 461, Autumn 2001

Structure of the Internet

• Inter-domain versus intra-domain routing



IP Addresses

- Reflect location in topology; used for scalable routing
 - Unlike "flat" Ethernet addresses
- Interfaces on same network share prefix
 - Prefix administratively assigned (IANA or ISP)
 - Addresses globally unique
- Routing only advertises entire networks by prefix
 - Local delivery in a single "network" doesn't involve router
 - (will make "network" precise later on)

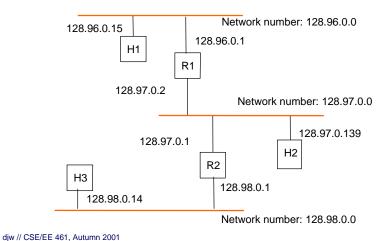
djw // CSE/EE 461, Autumn 2001

IPv4 Address Formats

• 32 bits written in "dotted quad" notation, e.g., 18.31.0.135

djw // CSE/EE 461, Autumn 2001

L11.7


IPv6 Address Format

- 128 bits written in 16 bit hexadecimal chunks
- Still hierarchical, just more levels

djw // CSE/EE 461, Autumn 2001

Updated Forwarding Routine

- Used to be "look up destination address for next hop"
- Now addresses have network and host portions:
 - If host: if destination network is the same as the host network, then deliver locally (without router). Otherwise send to the router
 - If router: look up destination network in routing table to find next hop and send to next router. If destination network is directly attached then deliver locally.
- (Note that it will get a little more complicated later)

djw // CSE/EE 461, Autumn 2001

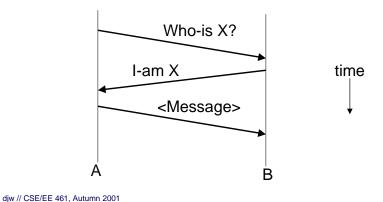
L11.10

Getting an IP address

- Old fashioned way: sysadmin configured each machine
- Dynamic Host Configuration Protocol (DHCP)
 - One DHCP server with the bootstrap info
 - Host address, gateway address, subnet mask, ...
 - Find it using broadcast
 - Addresses may be leased; renew periodically
- "Stateless" Autoconfiguration (in IPv6)
 - Get rid of server reuse Ethernet addresses for lower portion of address (uniqueness) and learn higher portion from routers

djw // CSE/EE 461, Autumn 2001

L11.11

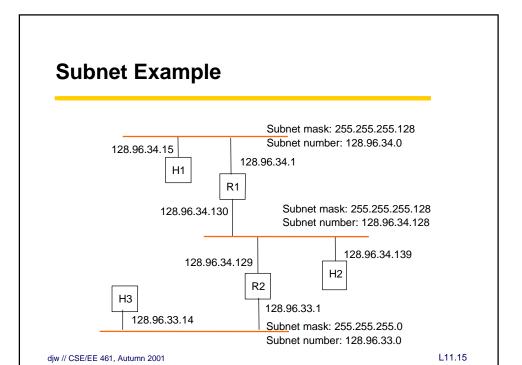

Address Resolution Protocol (ARP)

- On a single link, need Ethernet addresses to send a frame
 - ... source is a given, but what about destination?
 - Requires mapping from IP to MAC addresses
- ARP is a dynamic approach to learn mapping
 - Node A sends broadcast query for IP address X
 - Node B with IP address X replies with its MAC address M
 - A caches (X, M); old information is timed out (~15 mins)
 - Also: B caches A's MAC and IP addresses, other nodes refresh

djw // CSE/EE 461, Autumn 2001

ARP Example

- To send first message use ARP to learn MAC address
- For later messages (common case) don't need to ARP



Subnetting – More Hierarchy

- Split up one network number into multiple physical networks
- Internal structure isn't propagated
- Helps allocation efficiency

djw // CSE/EE 461, Autumn 2001

L11.14

Updated Forwarding Routine

- Used to know network from address (class A, B, C)
- Now need to "search" routing table for right subnet
 - If host: easy, just substitute "subnet" for "network"
 - If router: search routing table for the subnet that the destination belongs to, and use that to forward as before
- (Note that it will get a little more complicated later :)

djw // CSE/EE 461, Autumn 2001

Key Concepts

- Hierarchical address allocation helps routing scale
 - Addresses are constrained by topology
 - Only need to advertise and compute routes for networks
 - Hide internal structure within a domain via subnets
 - Keep host simple and let routers worry about routing
- ARP learns the mapping from IP to MAC address

djw // CSE/EE 461, Autumn 2001